Publications by authors named "Eric Benoist"

Dinuclear Re(I) complexes have proportionally been much less studied than mononuclear analogues. In particular, very little information is available about their solid-state emission properties. In this work, two structural isomers of dinuclear complexes (Bi-Re-metaPhe and Bi-Re-paraPhe), which differ by the relative position of the coordination spheres on a central phenyl ring, were synthesized and compared with each other and with the parent mononuclear compound (Mono-Re-Phe), from a theoretical and experimental point of view.

View Article and Find Full Text PDF

The tricarbonylrhenium complexes that incorporate a mesoionic carbene ligand represent an emerging and promising class of molecules, the solid-state optical properties of which have rarely been investigated. The aim of this comprehensive study is to compare three of these complexes with their 1,2,3-triazole-based analogues. The Hirshfeld surface analysis of the crystallographic data revealed that the triazolylidene derivatives are more prone to π-π interactions than their 1,2,3-triazole-based counterparts.

View Article and Find Full Text PDF

A wide range of nano-objects is found in many applications of our everyday life. Recognition of their peculiar properties and ease of functionalization has prompted their engineering into multifunctional platforms that are supposed to afford efficient tools for the development of biomedical applications. However, bridging the gap between bench to bedside cannot be expected without a good knowledge of their behaviour in vivo, which can be obtained through non-invasive imaging techniques, such as positron emission tomography (PET).

View Article and Find Full Text PDF

Since intramolecular π-π stacking interactions can modify the geometry, crystal packing mode, or even the electronic properties of transition metal complexes, they are also likely to influence the solid-state luminescence properties. Following this concept, a new tricarbonylrhenium(I) complex (Re-BPTA) was designed, based on a simple symmetrical 5,5'-dimethyl-4,4'-diphenyl-3,3'-bi-(1,2,4-triazole) organic ligand. The complex was prepared in good yield using a three-step procedure.

View Article and Find Full Text PDF

Tricarbonylrhenium(I) complexes that incorporate a chloride ligand are promising photoluminescent materials, but those incorporating a bromide or iodide ligand have received very little attention regarding their solid-state properties. In this work, three rhenium(I) complexes differing only by the nature of their halide ligand (X = Cl, Br, and I) were compared. They are based on a fac-[ReX(CO)(N^N)] framework where the N^N bidentate ligand is a 3-(2-pyridyl)-1,2,4-triazole unit functionalized by an appended phenyl group.

View Article and Find Full Text PDF

The title compound, CHNO, crystallizes in the monoclinic (2) space group. In the crystal, the almost planar mol-ecules display a flattened herringbone arrangement. Stacking mol-ecules are slipped in the lengthwise and widthwise directions and are linked by π-π inter-actions [(⋯ = 3.

View Article and Find Full Text PDF

Strongly luminescent tricarbonylrhenium(I) complexes are promising candidates in the field of optical materials. In this study, three new complexes bearing a 3-(2-pyridyl)-1,2,4-triazole (pyta) bidentate ligand with an appended phenyl group were obtained in very good yields owing to an optimized synthetic procedure. The first member of this series, complex 1, was compared with the previously studied complex RePBO to understand the influence of the fluorescent benzoxazole unit grafted on the phenyl ring.

View Article and Find Full Text PDF

Precise control over the production of carbon monoxide (CO) is essential to exploit the therapeutic potential of this molecule. The development of photoactive CO-releasing molecules (PhotoCORMs) is therefore a promising route for future clinical applications. Herein, a tricarbonyl-rhenium(i) complex (1-TPP), which incorporates a phosphine moiety as ancilliary ligand for boosting the photochemical reactivity, and a pyridyltriazole bidentate ligand with appended 2-phenylbenzoxazole moiety for the purpose of photoluminescence, was synthesized and characterized from a chemical and crystallographic point of view.

View Article and Find Full Text PDF

Mechanoresponsive luminescence (MRL) materials promise smart devices for sensing, optoelectronics and security. We present here the first report on the MRL activity of two Re complexes, opening up new opportunities for applications in these fields. Both complexes exhibit marked solid-state luminescence enhancement (SLE).

View Article and Find Full Text PDF

Identified in 1973, somatostatin (SST) is a cyclic hormone peptide with a short biological half-life. Somatostatin receptors (SSTRs) are widely expressed in the whole body, with five subtypes described. The interaction between SST and its receptors leads to the internalization of the ligand-receptor complex and triggers different cellular signaling pathways.

View Article and Find Full Text PDF

In order to improve the remarkable performance of a mononuclear tricarbonyl rhenium(i) complex (ReL1) that exhibits rare aggregation-induced phosphorescence enhancement (AIPE) behavior, two new complexes (ReL3 and ReL4) were prepared and investigated. They incorporate a 2-pyridyl-1,2,4-triazole (pyta) ligand connected to a 2-phenylbenzoxazole (PBO) moiety. Complex ReL3 differs from ReL1 by the presence of a bulky tert-butyl substituent, and ReL4 is an isomer where the PBO group is linked to the pyta ligand by its phenyl group.

View Article and Find Full Text PDF

In this work, two bidentate 2-pyridyl-1,2,3-triazole ligands (3a and 3b) containing a 4-substituted benzenesulfonamide pharmacophore prepared by classical click chemistry procedures, as well as their corresponding rhenium complexes, 4a and 4b of general formula [ReCl(CO)(L)] (L = 3a or 3b) were prepared and fully characterised by spectroscopic methods (IR, NMR, MS, UV-Vis), elemental analysis, X-ray diffraction, and theoretical studies using DFT and TD-DFT methods. In particular, we showed that, in the solid state, the pyridine and the triazole rings of 3b adopted an uncommon cis configuration which stems from intermolecular hydrogen bonds. Preliminary assays demonstrated a promising nanomolar inhibitory activity against carbonic anhydrase isoform IX for both ligands and complexes with a strong affinity K of 2.

View Article and Find Full Text PDF

Two isomeric tricarbonyl rhenium(i) complexes, ReL1 and ReL2, that possess a 2-pyridyl-1,2,n-triazole (pyta) ligand (n = 4 and 3, respectively) connected to a 2-phenylbenzoxazole (PBO) moiety, were synthesized in good yields. The X-ray structures showed that in ReL1 the PBO moiety and the pyta ligand almost form a right angle hindering electron delocalization, while in ReL2 their nearly planar arrangement favors the electron delocalization in the whole organic ligand. Therefore, the nature of the ligand significantly influences the electron distribution in the two complexes, as indicated by the results of TD-DFT calculations.

View Article and Find Full Text PDF

The development of novel radiopharmaceuticals for nuclear medicine based on M(CO)3 (M = Tc, Re) complexes has attracted great attention. The versatility of this core and the easy production of the fac-[M(CO)3(H2O)3](+) precursor could explain this interest. The main characteristics of these tricarbonyl complexes are the high substitution stability of the three CO ligands and the corresponding lability of the coordinated water molecules, yielding, via easy exchange of a variety of bi- and tridentate ligands, complexes xof very high kinetic stability.

View Article and Find Full Text PDF

A series of lanthanide complexes of [LnL(H2O)](2-) composition where Ln = Eu(III), Tb(III) or Gd(III) has been studied for determining their photophysical and relaxometric properties in aqueous solution. The bifunctional ligand L (H5BPMNTA) is an acyclic chelator based on a central functionalized 2,2'-bipyridine core and two iminodiacetate coordinating arms. The mono-aqua Eu(III) and Tb(III) complexes display attractive spectroscopic properties with an excitation wavelength at 316 nm, similar excited state lifetimes and overall quantum yields (in the ranges 0.

View Article and Find Full Text PDF

The goal of this study is to develop a novel brain receptor imaging agent. This study reports the synthesis, characterization and the biological evaluation of 1-((2-methoxyphenyl) piperazine)ferrocenecarboxamide labeled with technetium-99 m ((99m)Tc-MP). The (99m)Tc-MP was obtained quickly (radiolabelling time < 5 min), in 90% yield.

View Article and Find Full Text PDF

A novel bifunctional chelating agent based on a click chemistry strategy has been synthesized and characterized on the basis of spectroscopic techniques. The metal chelating part of this new class of tridentate N2O ligand combined a triazole unit and an aromatic ring. This latter semi-rigid framework induced a pre-organization of the chelating cavity, improving the stability of the corresponding metallic complexes (M = (99m) Tc, Re).

View Article and Find Full Text PDF

A novel bimodal fluorescent/radiolabelled probe based on a pyridyltriazole scaffold (known as pyta) is reported here. The final dual imaging agent combines carboxylate functionalization, for biomolecule conjugation, with two distinct metal chelating sites: a pyta-based tricarbonylrhenium moiety as a fluorescent probe and a (99m)Tc(CO3)(+) core through the tridentate chelating iminodiacetic acid (IDA) clamp as a SPECT reporter. The heterodinuclear (99m)Tc/Re complex , as well as its non-radioactive dirhenium analog , was prepared in six steps.

View Article and Find Full Text PDF

Six novel oxorhenium(V) complexes incorporating quinoline and isoquinoline carboxylic acid derivatives were prepared in good yields. Relying on the experimental conditions, compounds with two chelate ligands [ReOCl(iqc)2]·MeOH (1), [ReO(OMe)(iqc)2] (2), [ReO(OMe)(mqc)2] (3) and [ReO(OMe)(8-qc)2] (4) and compounds incorporating one bidentate ligand [ReOCl2(iqc)(PPh3)] (5) and [ReOCl2(mqc)(PPh3)] (6) were synthesized (iqcH = isoquinoline-1-carboxylic acid, mqcH = 4-methoxy-2-quinolinecarboxylic acid and 8-qcH = 8-quinolinecarboxylic acid). The reported compounds were characterized by spectroscopic methods and single crystal X-ray diffraction analysis.

View Article and Find Full Text PDF

Three new pyridyltriazole ligands (named pyta) bearing a 4-substituted phenyl arm (nitro- (2a), chloro- (2b) or aminophenyl (2c) moiety) have been synthesized using a convenient click chemistry strategy. The corresponding tricarbonylrhenium complexes 3a, 3b and 3c were prepared and fully characterized by means of NMR, IR and mass spectrometry, as well as X-ray crystallography for two of them (3a and 3b). The direct connection of a 4-substituted phenyl arm at the N1 position of the triazolyl ring has a significant influence on the geometry of both, the ligands and their corresponding Re-complexes.

View Article and Find Full Text PDF

In the title compound, C(20)H(29)N(5)O(4), the pyridine ring makes a dihedral angle of 10.41 (16)° with the triazole ring, which exhibits an azo-like character. In the crystal, mol-ecules are linked by C-H⋯O and C-H⋯N hydrogen bonds, and C-H⋯π inter-actions involving a methyl group and the pyridine ring of a neighbouring mol-ecule, leading to the formation of a three-dimensional network.

View Article and Find Full Text PDF

A potent lanthanide chelate, fulfilling the requirements for the development of MRI contrast agents or luminescent probes, was armed with alkyne groups. We then implemented a click methodology to graft the bifunctional ligand to azide-containing glucoside and maltoside scaffolds. The resulting hydrophilic glycoconjugates retained the ligand binding capacity for Eu(3+) or Tb(3+) ion as evidenced by the number of bound water molecules to the lanthanide ion.

View Article and Find Full Text PDF

In this communication, a novel synthetic pathway has been applied to prepare a dual imaging agent in a single molecule. The dinuclear Re(I)/Tc(I) complex 6, namely [Re(CO)(3)(bipy){(4-PyrIDA)Tc(CO)(3)}], is the first example of a Re/Tc-based heterometallic assembly which could act as a potential bimodal Optical/SPECT probe. Interestingly, the Re(I) complex intermediate 4 exhibits significant photophysical properties for biological applications.

View Article and Find Full Text PDF

An efficient protocol was developed to tether chelating agents and rhenium complexes onto a glucoside scaffold with a heterogeneous copper catalyst via click chemistry. The supported catalyst avoids the formation of unwanted copper complexes during the cyclisation step. The possibility to graft a pre-chelated M(CO)(3) core by click chemistry onto a biomolecule was highlighted for the first time.

View Article and Find Full Text PDF

To improve the targeting to tumors expressing the cholecystokinin receptor subtype 2 (CCK2R) with limited kidney uptake, we synthesized a novel cholecystokinin C-terminal tetrapeptide (CCK4)-based derivative conjugated to an original bipyridine-chelator (BPCA), 111In-BPCA-(Ahx)2-CCK4. To our knowledge this is the first CCK4-based radioligand that presents a high affinity for the CCK2R, a high and specific tumor uptake, a low renal accumulation and a very good visualization of tumors in vivo compared with an internal control, 111Indium-trans-cyclohexyldiethylenetriaminepenta-acetic acid-cholecystokinin octapeptide (111In-CHX-A''-DTPA-CCK8). These properties make 111In-BPCA-(Ahx)2-CCK4, a promising candidate for imaging and peptide receptor radionuclide therapy of CCK2R positive tumors.

View Article and Find Full Text PDF