Publications by authors named "Eric Battaglia"

Despite the involvement of several serine hydrolases (SHs) in the metabolism of xenobiotics such as dibutyl phthalate (DBP), no study has focused on mapping this enzyme class in zebrafish, a model organism frequently used in ecotoxicology. Here, we survey and identify active SHs in zebrafish larvae and search for biological markers of SH type after exposure to DBP. Zebrafish were exposed to 0, 5, and 100 µg/L DBP from 4 to 120 h post-fertilization.

View Article and Find Full Text PDF

Chromium has two main oxidation states, Cr(III) and Cr(VI), that can occur simultaneously in natural waters. Current consensus holds that Cr(VI) is of high ecotoxicological concern, but regards Cr(III) as poorly bioavailable and relatively non-toxic. In this work, the effects and bioaccumulation of Cr(III), Cr(VI) and their mixture were studied using the freshwater clam Corbicula fluminea as a model organism.

View Article and Find Full Text PDF

Despite the consensus about the importance of chemical speciation in controlling the bioavailability and ecotoxicity of trace elements, detailed speciation studies during laboratory ecotoxicity testing remain scarce, contributing to uncertainty when extrapolating laboratory findings to real field situations in risk assessment. We characterized the speciation and ecotoxicological effects of chromium (Cr and Cr ) in the International Organization for Standardization (ISO) medium for algal ecotoxicity testing. Total and dissolved (< 0.

View Article and Find Full Text PDF

Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known.

View Article and Find Full Text PDF

CDC25 (cell division cycle 25) phosphatases are essential for cell cycle control under normal conditions and in response to DNA damage. They are represented by three isoforms, CDC25A, B and C, each of them being submitted to an alternative splicing mechanism. Alternative splicing of many genes is affected in response to genotoxic stress, but the impact of such a stress on CDC25 splicing has never been investigated.

View Article and Find Full Text PDF

Reactive oxygen species regulate protein functionality. Cell cycle CDC25 phosphatases are targets of such oxidative regulation in vitro. We sought to evaluate if a thioredoxin (trx)-dependent redox regulation of CDC25 exists in cancer cells.

View Article and Find Full Text PDF

Cysteine residues in proteins and enzymes often fulfill rather important roles, particularly in the context of cellular signaling, protein-protein interactions, substrate and metal binding, and catalysis. At the same time, some of the most active cysteine residues are also quite sensitive toward (oxidative) modification. S-Thiolation, S-nitrosation, and disulfide bond and sulfenic acid formation are processes which occur frequently inside the cell and regulate the function and activity of many proteins and enzymes.

View Article and Find Full Text PDF

Background: CDC25 phosphatases control cell cycle progression by activating cyclin dependent kinases. The three CDC25 isoforms encoding genes are submitted to alternative splicing events which generate at least two variants for CDC25A and five for both CDC25B and CDC25C. An over-expression of CDC25 was reported in several types of cancer, including breast cancer, and is often associated with a poor prognosis.

View Article and Find Full Text PDF

Carboxylic acid-containing drugs are metabolized mainly through the formation of glucuronide and coenzyme A esters. These conjugates have been suspected to be responsible for the toxicity of several nonsteroidal anti-inflammatory drugs because of the reactivity of the electrophilic ester bond. In the present study we investigated the reactivity of ketoprofenyl-acylglucuronide (KPF-OG) and ketoprofenyl-acyl-coenzyme A (KPF-SCoA) toward cytosolic rat liver glutathione S-transferases (GST).

View Article and Find Full Text PDF

The impact of the anti-cancer drugs cisplatin (CDDP) and adriamycin (ADR) was investigated on sensitive and resistant MCF-7-derived human breast cancer cells. Cytotoxicity was evaluated by MTT assay, reactive oxygen species (ROS), apoptosis and necrosis by flow cytometry, glutathione (GSH) by HPLC, and Bcl-2, Bax and PARP expression by Western blot. A perturbation of ROS and intracellular GSH levels, and the enhancement of both apoptosis and necrosis were observed in sensitive cells.

View Article and Find Full Text PDF

An efficient synthesis of dialkylsubstituted maleic anhydrides 1a-j is described. The inhibitory potential of these original anhydride derivatives was tested toward the three human isoforms A, B and C of dual specific phosphatases Cdc25. A micromolar range inhibition of Cdc25s was observed with the maleic anhydrides bearing simple alkyl side chains longer than C(9), to reach the optimal activity with a C(17) chain length.

View Article and Find Full Text PDF

4-Azido-2-hydroxybenzoic acid (4-AzHBA), a novel photoactive benzoic acid derivative, has been synthesized and used as a photoprobe to identify the phenol binding site of UDP-glucuronosyltransferases (UGTs). Analysis of recombinant His-tag UGTs from the 1A family for their ability to glucuronidate p-nitrophenol (pNP) and 4-methylumbelliferone (4-MU) revealed that UGT1A10 shows high activity toward phenols and phenol derivatives. Purified UGT1A10 was photolabeled with 4-AzHBA, digested with trypsin, and analyzed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-mass spectrometry.

View Article and Find Full Text PDF

The first synthesis of an N-acylated photoactivatable analogue of reduced glutathione is described. N-(4-Benzoylbenzoyl)glutathione (8) was found to be an inhibitor and a photoaffinity probe of purified rat liver glutathione S-transferases.

View Article and Find Full Text PDF

Thieno analogues of kenpaullone have been synthesized using an established method. We investigated the effect of five structural analogues of kenpaullone on vincristine sensitive and resistant MCF7 (human mammary adenocarcinoma) cells. One analogue, 8-Bromo-6,11-dihydro-thieno-[3',2':2,3]azepino[4,5-b]indol-5(4H)-one (3a), showed an antiproliferative activity in the drug sensitive cell line that led to cell accumulation in G2/M phase.

View Article and Find Full Text PDF

The histone deacetylase inhibitor sodium butyrate induces several gene products that modify cellular metabolism. Here, we investigated its ability to modulate glutathione-related detoxification enzymes in the breast cancer cell line MCF-7 and a derivative resistant to vincristine (VCREMS). We found that sodium butyrate induced glutathione S-transferase and glutathione-dependent peroxidase activities and triggered glutathione depletion.

View Article and Find Full Text PDF

Sodium butyrate (NaBu), a potent histone deacetylase inhibitor, modulates the expression of a large number of genes. The purpose of this study was to determine whether this dietary agent could induce apoptosis in MCF-7 cells, a breast cancer cell line that lacks caspase-3 activity, and to identify the mechanisms that underlie NaBu toxicity in these cells. Cell viability assessed by the activity of mitochondrial succinate dehydrogenase (MTT assay) revealed a dose-dependent reduction of MCF-7 cellular growth in response to NaBu treatment.

View Article and Find Full Text PDF