Publications by authors named "Eric Bartee"

Article Synopsis
  • Peritoneal dissemination is frequently observed in patients with gynecologic and gastrointestinal cancers, and there's growing evidence that regional immunity plays a crucial role in cancer treatment.
  • This study investigates an intraperitoneal cell-based vaccine using silicified ovarian cancer cells to improve survival rates, exploring immune mechanisms and vaccine effects in mouse models.
  • Results show that the vaccine activates myeloid cells, leading to T cell-mediated tumor clearance and the development of systemic immunity, suggesting that intraperitoneal delivery could enhance cancer treatment efficacy, especially in metastatic colorectal cancer.
View Article and Find Full Text PDF

Intraperitoneal (IP) administration of immunogenic mesoporous silica nanoparticles (iMSN) in a mouse model of metastatic ovarian cancer promotes the development of tumor-specific CD8 T cells and protective immunity. IP delivery of iMSN functionalized with the Toll-like receptor (TLR) agonists polyethyleneimine (PEI), CpG oligonucleotide, and monophosphoryl lipid A (MPLA) stimulated rapid uptake by all peritoneal myeloid subsets. Myeloid cells quickly transported iMSN to milky spots and fat-associated lymphoid clusters (FALCs) present in tumor-burdened adipose tissues, leading to a reduction in suppressive T cells and an increase in activated memory T cells.

View Article and Find Full Text PDF

Cytokine therapy represents an attractive option to improve the outcomes of cancer patients. However, the systemic delivery of these agents often leads to severe immune-related toxicities, which can prevent their efficient clinical use. One approach to address this issue is the use of recombinant oncolytic viruses to deliver various cytokines directly to the tumor.

View Article and Find Full Text PDF

Oncolytic viruses are being heavily investigated as novel methods to treat cancers; however, predicting their therapeutic efficacy remains challenging. The most commonly used predictive tests involve determining the susceptibility of a tumor's malignant cells to infection with an oncolytic agent. Whether these tests are truly predictive of efficacy, however, remains unclear.

View Article and Find Full Text PDF

Background: Arginine (Arg) is a semiessential amino acid whose bioavailability is required for the in vitro replication of several oncolytic viruses. In vivo, Arg bioavailability is regulated by a combination of dietary intake, protein catabolism, and limited biosynthesis through portions of the urea cycle. Interestingly, despite the importance of bioavailable Arg to support cellular proliferation, many forms of cancer are functionally auxotrophic for this amino acid due to the epigenetic silencing of argininosuccinate synthetase 1 (ASS1), an enzyme responsible for the conversion of citrulline and aspartate into the Arg precursor argininosuccinate.

View Article and Find Full Text PDF

Oncogenes destabilize STING in epithelial cell-derived cancer cells, such as head and neck squamous cell carcinomas (HNSCCs), to promote immune escape. Despite the abundance of tumor-infiltrating myeloid cells, HNSCC presents notable resistance to STING stimulation. Here, we show how saturated fatty acids in the microenvironment dampen tumor response to STING stimulation.

View Article and Find Full Text PDF

Potassium (K) is one of the most abundant cations in the human body. Under normal conditions, the vast majority of K is found within cells, and the extracellular [K] is tightly regulated to within 3.0 to 5.

View Article and Find Full Text PDF

T-cell immunoglobulin and mucin domain 3 (TIM3) is emerging as a potential target for antibody-based checkpoint blockade. However, the efficacy of TIM3 blockade in combination with other treatment modalities, has not been extensively studied. In the current work we combined TIM3 blockade with myxoma virus-based oncolytic virotherapy (OV).

View Article and Find Full Text PDF

Current imaging approaches used to monitor tumor progression can lack the ability to distinguish true progression from pseudoprogression. Simultaneous metabolic 2-deoxy-2-[F]fluoro-D-glucose ([F]FDG) positron emission tomography (PET) and magnetic resonance imaging (MRI) offers new opportunities to overcome this challenge by refining tumor identification and monitoring therapeutic responses to cancer immunotherapy. In the current work, spatial and quantitative analysis of tumor burden were performed using simultaneous [F]FDG-PET/MRI to monitor therapeutic responses to a novel silicified cancer cell immunotherapy in a mouse model of disseminated serous epithelial ovarian cancer.

View Article and Find Full Text PDF

Background: Oncolytic virotherapy (OV) represents a method to treat a variety of solid tumors by inducing antitumor immune responses. While this therapy has been extremely efficacious in preclinical models, translating these successes into human patients has proven challenging. One of the major reasons for these failures is the existence of immune-regulatory mechanisms, which dampen the efficacy of virally induced antitumor immunity.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical removal of tumors is a common cancer treatment, but it often fails due to tumor recurrence or distant spread.
  • Patients typically receive neoadjuvant therapies, like chemotherapy, before surgery to improve outcomes, but immunotherapies are gaining attention as alternative options.
  • Oncolytic virotherapy, especially with the FDA-approved Talimogene Laherparepvec, shows promise in preclinical and clinical studies for neoadjuvant use, but several key questions need to be resolved for it to be widely adopted.
View Article and Find Full Text PDF

Background: Adoptive T cell transfer (ACT) therapy improves outcomes in patients with advanced malignancies, yet many individuals relapse due to the infusion of T cells with poor function or persistence. Toll-like receptor (TLR) agonists can invigorate antitumor T cell responses when administered directly to patients, but these responses often coincide with toxicities. We posited that TLR agonists could be repurposed ex vivo to condition T cells with remarkable potency in vivo, circumventing TLR-related toxicity.

View Article and Find Full Text PDF

Polyamines are known to play a significant role in cancer progression and treatment using difluoromethylornithine (DFMO), an inhibitor of polyamine biosynthesis, has shown some clinical promise. It is interesting to note that, while DFMO is directly cytostatic in vitro, recent work has suggested that it achieves its antitumor efficacy in vivo by enhancing adaptive antitumor immune responses. On the basis of these data, we hypothesized that DFMO might act as an immune sensitizer to increase tumor responsiveness to checkpoint blockade.

View Article and Find Full Text PDF

IL-12 (p35/p40) and IL-23 (p19/p40) signal through IL-12R (IL-12Rβ2/β1) and IL-23R (IL-23Rα/IL-12Rβ1), respectively, which can promote pathogenic T lymphocyte activation, differentiation, and function in graft-versus-host disease (GVHD). With the use of murine models of allogeneic hematopoietic cell transplantation (HCT), we found that IL-12Rβ1 on donor T cells was dispensable to induce acute GVHD development in certain circumstances, while IL-23Rα was commonly required. This observation challenges the current paradigm regarding IL-12Rβ1 as a prerequisite to transmit IL-23 signaling.

View Article and Find Full Text PDF

Oncolytic virotherapy relies on the induction of anti-tumor immune responses to achieve therapeutic efficacy. The factors that influence the induction of these responses, however, are not well understood. To begin to address this lack of knowledge, we asked how decreasing the susceptibility of malignant cells to direct viral infection would impact the induction of immune responses and therapeutic efficacy caused by oncolytic myxoma virus treatment.

View Article and Find Full Text PDF

Background: Oncolytic therapy uses live-replicating viruses to improve the immunological status of treated tumors. Critically, while these viruses are known to self-amplify in vivo, clinical oncolytic therapies still appear to display a strong dose dependence and the mechanisms mediating this dose dependence are not well understood.

Methods: To explore this apparent contradiction, we investigated how the initial dose of oncolytic myxoma virus affected the subsequent ability of treatment to alter the immunological status of tumors as well as synergize with programmed cell death protein 1 (PD1) blockade.

View Article and Find Full Text PDF

Poxviruses are large enveloped viruses that replicate exclusively in the cytoplasm. Like all viruses, their replication cycle begins with virion adsorption to the cell surface. Unlike most other viral families, however, no unique poxviral receptor has ever been identified.

View Article and Find Full Text PDF

Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread.

View Article and Find Full Text PDF

Introduction: Cancer has become one of the most critical health issues of modern times. To overcome the ineffectiveness of current treatment options, research is being done to explore new therapeutic modalities. One such novel treatment is oncolytic virotherapy (OV) which uses tumor tropic viruses to specifically target and kill malignant cells.

View Article and Find Full Text PDF

Adoptive T cell transfer therapy (ACT) using tumor infiltrating lymphocytes or lymphocytes redirected with antigen receptors (CAR or TCR) has revolutionized the field of cancer immunotherapy. Although CAR T cell therapy mediates robust responses in patients with hematological malignancies, this approach has been less effective for treating patients with solid tumors. Additionally, toxicities post T cell infusion highlight the need for safer ACT protocols.

View Article and Find Full Text PDF

Expression of PDL1 on the surface of tumor cells can blunt the efficacy of many cancer immunotherapies. For example, our lab has previously shown that tumors derived from malignant cells incapable of expressing PDL1 are highly susceptible to immunotherapy induced by oncolytic virus treatment while tumors derived from PDL1 capable cells are highly resistant. In patient biopsies, however, expression of PDL1 on malignant cells is often not uniform with some cells expressing PDL1 while others do not.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is an aggressive form of brain cancer which is associated with poor prognosis. A variety of oncolytic viruses have previously shown positive efficacy against GBM, potentially offering new treatment options for patients. One such oncolytic virus is Myxoma virus (MYXV), a rabbit-specific poxvirus that has been shown to be efficacious against a variety of tumor models including GBM.

View Article and Find Full Text PDF

Myxoma virus is a member of Leporipoxviridae whose tropism is tightly restricted to lagomorphs. In susceptible Oryctolagus rabbits, the virus causes a highly lethal disease known as myxomatosis, which begins as a localized infection but rapidly disseminates throughout the animal, leading to immune compromise, mucosal infections, multiorgan failure, and death. In a research setting, myxoma infection of susceptible Oryctolagus cuniculus rabbits is used as a model of poxviral disease progression and represents one of only a few means to study the pathogenesis of this viral family in a native host species.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM.

View Article and Find Full Text PDF

Blockade of the programmed cell death protein 1 (PD1) pathway is clinically effective against human cancers. Although multiple types of malignancies have been shown to respond to PD1 agents, only a small percentage of patients typically benefit from this treatment. In addition, PD1 therapy often causes serious immune-related adverse events.

View Article and Find Full Text PDF