While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor-binding domain to direct lentivirus infection of Spike-expressing cells. Using four different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. Targeting is dependent on the fusion function of the Spike protein, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery.
View Article and Find Full Text PDFUnlabelled: While investigating methods to target gene delivery vectors to specific cell types, we examined the potential of using a nanobody against the SARS-CoV-2 Spike protein receptor binding domain to direct lentivirus infection of Spike-expressing cells. Using three different approaches, we found that lentiviruses with surface-exposed nanobody domains selectively infect Spike-expressing cells. The targeting is dependent on the fusion function of Spike, and conforms to a model in which nanobody binding to the Spike protein triggers the Spike fusion machinery.
View Article and Find Full Text PDF(Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism.
View Article and Find Full Text PDFThe HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells.
View Article and Find Full Text PDF(Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism.
View Article and Find Full Text PDFTrimers of the HIV-1 envelope (Env) protein perform receptor binding and virus-cell fusion functions during the virus life cycle. The cytoplasmic tail (CT) of Env forms an unusual baseplate structure, and is palmitoylated, rich in arginines, carries trafficking motifs, binds cholesterol, and interacts with host proteins. To dissect CT activities, we examined a panel of Env variants, including CT truncations, mutations, and an extension.
View Article and Find Full Text PDFThe capsid (CA) domain of the HIV-1 precursor Gag (PrGag) protein plays multiple roles in HIV-1 replication, and is central to the assembly of immature virions, and mature virus cores. CA proteins themselves are composed of N-terminal domains (NTDs) and C-terminal domains (CTDs). We have investigated the interactions of CA with anti-CA nanobodies, which derive from the antigen recognition regions of camelid heavy chain-only antibodies.
View Article and Find Full Text PDFThe lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS.
View Article and Find Full Text PDFZika virus (ZIKV), an arbovirus of global concern, remodels intracellular membranes to form replication sites. How ZIKV dysregulates lipid networks to allow this, and consequences for disease, is poorly understood. Here, we perform comprehensive lipidomics to create a lipid network map during ZIKV infection.
View Article and Find Full Text PDFThe matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface.
View Article and Find Full Text PDFWild type (WT) HIV-1 envelope (Env) protein cytoplasmic tails (CTs) appear to be composed of membrane-proximal, N-terminal unstructured regions, and three C-terminal amphipathic helices. Previous studies have shown that WT and CT-deleted (ΔCT) Env proteins are incorporated into virus particles via different mechanisms. WT Env proteins traffic to cell plasma membranes (PMs), are rapidly internalized, recycle to PMs, and are incorporated into virions in permissive and restrictive cells in a Gag matrix (MA) protein-dependent fashion.
View Article and Find Full Text PDFThe matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult.
View Article and Find Full Text PDFMutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions.
View Article and Find Full Text PDFThe matrix (MA) domain of the HIV-1 precursor Gag protein (PrGag) has been shown interact with the HIV-1 envelope (Env) protein, and to direct PrGag proteins to plasma membrane (PM) assembly sites by virtue of its affinity to phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2). Unexpectedly, HIV-1 viruses with large MA deletions (ΔMA) have been shown to be conditionally infectious as long as they are matched with Env truncation mutant proteins or alternative viral glycoproteins. To characterize the interactions of wild type (WT) and ΔMA Gag proteins with PI(4,5)P2 and other acidic phospholipids, we have employed a set of lipid biosensors as probes.
View Article and Find Full Text PDFBackground: Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network.
View Article and Find Full Text PDFWe have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles.
View Article and Find Full Text PDFUnlabelled: The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices.
View Article and Find Full Text PDFUnlabelled: We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity.
View Article and Find Full Text PDFThe HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein.
View Article and Find Full Text PDFDuring HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA.
View Article and Find Full Text PDFDuring HIV-1 morphogenesis, the precursor Gag protein is processed to release capsid (CA) proteins that form the mature virus core. In this process, the CA proteins assemble a lattice in which N-terminal domain (NTD) helices 1-3 are critical for multimer formation. Mature core assembly requires refolding of the N-terminus of CA into a β-hairpin, but the precise contribution of the hairpin core morphogenesis is unclear.
View Article and Find Full Text PDFThe matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). MA also binds to RNA at a site that overlaps its PI(4,5)P(2) site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding.
View Article and Find Full Text PDFThe matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs.
View Article and Find Full Text PDFBased on structural information, we have analyzed the mechanism of mature HIV-1 core assembly and the contributions of structural elements to the assembly process. Through the use of several in vitro assembly assay systems, we have examined details of how capsid (CA) protein helix 1, ß-hairpin and cyclophilin loop elements impact assembly-dependent protein interactions, and we present evidence for a contribution of CA helix 6 to the mature assembly-competent conformation of CA. Additional experiments with mixtures of proteins in assembly reactions provide novel analyses of the mature core assembly mechanism.
View Article and Find Full Text PDF