Publications by authors named "Eric Baer"

High temperature, high energy density, and low loss dielectric films are promising candidates for miniaturized capacitors in electric vehicles and high-speed trains. However, single-component polymers could not achieve these desired properties simultaneously. Polymer multilayer films (MLFs), which combine a high dielectric constant polymer [e.

View Article and Find Full Text PDF

Continuous tapes of polypropylene (PP) and high-density polyethylene (HDPE) were produced using a novel multiplication co-extrusion process. The structure of the PP/HDPE tapes consists of co-continuous PP and HDPE domains aligned in the extrusion direction, forming a fiber-like composite structure with individual domain thicknesses of 200-500 nm. This unique structure created a significantly large contact interface between the polymer domains.

View Article and Find Full Text PDF

The study of natural cellular materials offers valuable insights into the superior properties and functions underlying their unique structure and benefits the design and fabrication of advanced biomimetic materials. In this study, we present a systematic investigation of the mechanical behavior of fresh and oven-dried pomelo peels. Density measurements revealed the gradient structure of the pomelo peel, which contributed to its mechanical properties.

View Article and Find Full Text PDF

To meet the stringent requirements of next-generation film capacitors for power electronics, multilayer films (MLFs) are fabricated with the advantage of achieving high temperature rating, high energy density, and reasonably low loss simultaneously. In this study, a high permittivity polar polymer, poly(vinylidene fluoride) (PVDF), is multilayered with a linear, low loss dielectric polymer such as high-temperature polycarbonate (HTPC). However, the dielectric loss of these MLFs was still high as compared with current state-of-the-art biaxially oriented polypropylene (BOPP) films.

View Article and Find Full Text PDF

This work describes the fabrication of antimicrobial multilayered polymeric films containing carvacrol (used as a model essential oil) by co-extrusion and multiplication technique. The microlayering process was utilized to produce films, with up to 65 alternating layers, of carvacrol-containing low-density polyethylene (LDPE) and ethylene vinyl alcohol copolymer (EVOH). Carvacrol was melt compounded with LDPE or loaded into halloysite nanotubes (HNTs) in a pre-compounding step prior film production.

View Article and Find Full Text PDF

Poly(ε-caprolactone) (PCL)-based nanomaterials, such as nanoparticles and liposomes, have exhibited great potential as controlled release systems, but the difficulties in large-scale fabrication limit their practical applications. Among the various methods being developed to fabricate polymer nanosheets (PNSs) for different applications, such as Langmuir-Blodgett technique and layer-by-layer assembly, are very effort consuming, and only a few PNSs can be obtained. In this paper, poly(ε-caprolactone)-based PNSs with adjustable thickness are obtained in large quantity by simple water exposure of multilayer polymer films, which are fabricated via a layer multiplying coextrusion method.

View Article and Find Full Text PDF

We report the successful implementation of a novel melt co-extrusion process to fabricate ca. 1 μm diameter fibers of poly(caprolactone) (PCL) containing the antifungal compound clotrimazole in concentrations between 4 and 8 wt%. The process involves co-extrusion of a clotrimazole-loaded PCL along with poly(ethylene oxide) (PEO) as a co-feed, with subsequent removal of PEO to isolate PCL-clotrimazole fibers.

View Article and Find Full Text PDF

Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved.

View Article and Find Full Text PDF

Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches.

View Article and Find Full Text PDF

Wide-angle X-ray scattering in conjunction with pole figure technique was used to study the texture of poly(vinylidene fluoride) (PVDF) α and γ phase crystals in nanolayered polysulfone/poly(vinylidene fluoride) films (PSF/PVDF) produced by layer-multiplying coextrusion. In all as-extruded PSF/PVDF films, the PVDF nanolayers crystallized into the α phase crystals. A large fraction of those crystals was oriented with macromolecular chains perpendicular to the PSF/PVDF interface as evidenced from the (021) pole figures.

View Article and Find Full Text PDF

We describe the formation, characterization and theoretical understanding of microlenses comprised of alternating polystyrene and polymethylmethacrylate layers produced by multilayer coextrusion. These lenses are fabricated by photolithography, using a grayscale mask followed by plasma etching, so that the refractive index alternation of the bilayer stack appears across the radius of the microlens. The alternating quarter-wave thick layers form a one-dimensional photonic crystal whose dispersion augments the material dispersion, allowing one to sculpt the chromatic dispersion of the lens by adjusting the layered structure.

View Article and Find Full Text PDF

A photochemical modification of melt-extruded polymeric nanofibers is described. A bioorthogonal functional group is used to decorate fibers made exclusively from commodity polymers, covalently attach fluorophores and peptides, and direct cell growth. Our process begins by using a layered coextrusion method, where poly(ε-caprolactone) (PCL) nanofibers are incorporated within a macroscopic poly(ethylene oxide) (PEO) tape through a series of die multipliers within the extrusion line.

View Article and Find Full Text PDF

Poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TFE) is confined between alternating layers of poly(ethylene terephthalate) (PET) utilizing a unique multilayer processing technology, in which PVDF-TFE and PET are melt-processed in a continuous fashion. Postprocessing techniques including biaxial orientation and melt recrystallization were used to tune the crystal orientation of the PVDF-TFE layers, as well as achieve crystallinity in the PET layers through strain-induced crystallization and thermal annealing during the melt recrystallization step. A volume additive model was used to extract the effect of crystal orientation within the PVDF-TFE layers and revealed a significant enhancement in the modulus from 730 MPa in the as-extruded state (isotropic) to 840 MPa in the biaxially oriented state (on-edge) to 2230 MPa in the melt-recrystallized state (in-plane).

View Article and Find Full Text PDF

A synthetic polymeric lens was designed and fabricated based on a bio-inspired, "Age=5" human eye lens design by utilizing a nanolayered polymer film-based technique. The internal refractive index distribution of an anterior and posterior GRIN lens were characterized and confirmed against design by µATR-FTIR. 3D surface topography of the fabricated aspheric anterior and posterior lenses was measured by placido-cone topography and exhibited confirmation of the desired aspheric surface shape.

View Article and Find Full Text PDF

Dispersions of isotactic polypropylene (PP) particles in polystyrene (PS) were produced by interfacially driven breakup of nanolayers in multilayered systems that were fabricated by means of layer-multiplying coextrusion. The droplet size was controlled by the individual PP layer thickness ranging from 12 to 200 nm. In addition, PP was melt blended with PS to produce PP droplets larger than those formed by breakup of nanolayers.

View Article and Find Full Text PDF

We report on improved gain and spectral control in co-extruded all-polymer multilayer distributed feedback (DFB) lasers achieved by folding and deliberate modification of the center "defect" layer. Because DFB laser gain is greater at spectral defects inside the reflection band than at the band edges, manipulation of structural defects can be used to alter spectral defects and thereby tune the output wavelength and improve laser efficiency. By experimentally terracing the layer that becomes the center of the fold, we tuned the lasing wavelength across the reflection stop-band (∼25 nm) in controllable, discrete steps.

View Article and Find Full Text PDF

The effect of confinement on the deformation behavior of poly(ethylene oxide) (PEO) was studied using melt processed coextruded poly(ethylene-co-acrylic acid) (EAA) and PEO multilayer films with varying PEO layer thicknesses from 3600 to 25 nm. The deformation mechanism was found to shift as layer thickness was decreased between 510 and 125 nm, from typical axial alignment of the crystalline fraction, as seen in bulk materials, to nonuniform micronecking mechanisms found in solution-grown single crystals. This change was evaluated via tensile testing, wide-angle X-ray diffraction (WAXD), atomic force microscopy (AFM), and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

Forced assembly processing provides a unique opportunity to examine the effects of confinement on block copolymers (BCPs) via conventional melt processing techniques. The microlayering process was utilized to produce novel materials with enhanced mechanical properties through selective manipulation of layer thickness. Multilayer films consisting of an elastomeric, symmetric block copolymer confined between rigid polystyrene (PS) layers were produced with layer thicknesses ranging from 100 to 600 nm.

View Article and Find Full Text PDF

Using a layer-multiplying coextrusion process to fabricate films with thousands of alternating polymer nanolayers, we report here a new crystalline morphology in confined polymer nanolayers and an abrupt transition in the crystallization habit. At higher temperatures, poly(ethylene oxide) crystallizes as large, in-plane lamellae. A 5 °C change in the crystallization temperature produces an on-edge lamellar orientation.

View Article and Find Full Text PDF

We have investigated the formation of in-bandgap delocalized modes due to random lattice disorder as determined from the longitudinal mode spacing in a distributed Bragg laser. We were able to measure the penetration depth, and from transfer matrix simulations, determine how the localization length is altered for disordered lattices. Transfer matrix simulations and studies of the ensemble average were able to connect the gap delocalized modes to localized modes outside of the gap as expected from consideration of Anderson localization, as well as identify the controlling parameters.

View Article and Find Full Text PDF

The design and fabrication of ultrathin polymer layers are of increasing importance because of the rapid development of nanoscience and nanotechnology. Confined, two-dimensional crystallization of polymers presents challenges and opportunities due to the long-chain, covalently bonded nature of the macromolecule. Using an innovative layer-multiplying coextrusion process to obtain assemblies with thousands of polymer nanolayers, we discovered a morphology that emerges as confined polyethylene oxide (PEO) layers are made progressively thinner.

View Article and Find Full Text PDF

We have assembled and studied melt-processed all-polymer lasers comprising distributed Bragg reflectors that were fabricated in large sheets using a co-extrusion process and define the cavities for dye-doped compression-molded polymer gain core sheets. Distributed Bragg reflector (DBR) resonators consisting of 128 alternating poly(styrene) (PS) and poly(methyl methacrylate) (PMMA) layers were produced by multilayer co-extrusion. Gain media were fabricated by compression-molding thermoplastic host poly notmers doped with organic laser dyes.

View Article and Find Full Text PDF

Single crystals of poly(γ-benzyl L-glutamate) were formed by epitaxial crystallization from solution in mesitylene on NaCl, KI, and KCl (001) cleavage faces. From electron microscopy and diffraction studies, the structure of these overgrowths was determined to be that of lamellae containing chain-folded α-helical macromolecules. The usual type of crystal perfection, that of ordered helix axes and disordered side groups, was exhibited by this synthetic polypeptide.

View Article and Find Full Text PDF