Background: Low-density lipoprotein receptor-related protein 1b (encoded by ) is a putative tumor suppressor, and preliminary evidence suggests mutated cancers may have improved outcomes with immune checkpoint inhibitors (ICI).
Methods: We conducted a multicenter, retrospective pan-cancer analysis of patients with alterations treated with ICI at Duke University, Johns Hopkins University (JHU) and University of Michigan (UM). The primary objective was to assess the association between overall response rate (ORR) to ICI and pathogenic or likely pathogenic (P/LP) alterations compared with variants of unknown significance (VUS).
To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/β-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and β-catenin activity.
View Article and Find Full Text PDFOsteosarcoma (OS) is the most common type of malignant bone tumor. Despite aggressive multimodal treatments, including surgical resection, chemotherapy and adjunctive immunotherapies, patients with OS with high-grade malignancy have a poor five-year survival rate that has remained unchanged over the past two decades, highlighting the urgent requirement for novel therapeutic approaches. Signal transducers and activators of transcription 3 (STAT3) has been implicated as an oncogene and therapeutic target in a variety of neoplastic diseases.
View Article and Find Full Text PDFThe Janus kinase-2 (Jak2)-signal transducer and activator of transcription-3 (STAT3) pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC) and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization.
View Article and Find Full Text PDFBackground: Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance.
View Article and Find Full Text PDFConstitutive activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in osteosarcoma, and hence, may serve as a therapeutic target. In order to target STAT3, we tested two new STAT3 inhibitors, LLL12 and FLLL32. LLL12 and FLLL32 inhibit STAT3 phosphorylation and STAT3 downstream targets.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
November 2010
Curcumin and tetrahydrocurcumin (THC) have been found as potent DNMT1 inhibitors, but they suffer from low oral bioavailability and rapid metabolism in vivo. To circumvent these problems, two curcumin analogs: 1,7-bis(3,4-dimethoxyphenyl)-4,4-dimethyl-1,6-heptadiene-3,5-dione (TMC) and 1,7-bis(3,4-dimethoxyphenyl)-4-cyclohexyl-1,6-heptadiene-3,5-dione (DMCHC) have been synthesized to enhance their stability by blocking the two metabolic sites, the phenolic and C4 methylene moieties. Both compounds have shown inhibitory activity on M.
View Article and Find Full Text PDFBackground: Targeting Signal Transducer and Activator of Transcription 3 (STAT3) signaling is an attractive therapeutic approach for most types of human cancers with constitutively activated STAT3. A novel small molecular STAT3 inhibitor, FLLL32 was specifically designed from dietary agent, curcumin to inhibit constitutive STAT3 signaling in multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cells.
Results: FLLL32 was found to be a potent inhibitor of STAT3 phosphorylation, STAT3 DNA binding activity, and the expression of STAT3 downstream target genes in vitro, leading to the inhibition of cell proliferation as well as the induction of Caspase-3 and PARP cleavages in human multiple myeloma, glioblastoma, liver cancer, and colorectal cancer cell lines.
Background: We characterized the biologic effects of a novel small molecule STAT3 pathway inhibitor that is derived from the natural product curcumin. We hypothesized this lead compound would specifically inhibit the STAT3 signaling pathway to induce apoptosis in melanoma cells.
Results: FLLL32 specifically reduced STAT3 phosphorylation at Tyr705 (pSTAT3) and induced apoptosis at micromolar amounts in human melanoma cell lines and primary melanoma cultures as determined by annexin V/propidium iodide staining and immunoblot analysis.