Membrane-less organelles are cellular structures which arise through the phenomenon of phase separation. This process enables compartmentalization of specific sets of macromolecules (e.g.
View Article and Find Full Text PDFThe positive transcription elongation factor b (P-TEFb) promotes transcription elongation through phosphorylation of the RNA polymerase II C-terminal domain. This process is not well understood, partly due to difficulties in determining the specificity of P-TEFb toward the various heptad repeat motifs within the C-terminal domain. A simple assay using mass spectrometry was developed to identify the substrate specificity of the Drosophila melanogaster P-TEFb (DmP-TEFb) in vitro.
View Article and Find Full Text PDFArch Biochem Biophys
August 2017
The prevalence of intrinsically disordered protein regions, particularly in eukaryotic proteins, and their clear functional advantages for signaling and gene regulation have created an imperative for high-resolution structural and mechanistic studies. NMR spectroscopy has played a central role in enhancing not only our understanding of the intrinsically disordered native state, but also how that state contributes to biological function. While pathological functions associated with protein aggregation are well established, it has recently become clear that disordered regions also mediate functionally advantageous assembly into high-order structures that promote the formation of membrane-less sub-cellular compartments and even hydrogels.
View Article and Find Full Text PDFThe carboxy-terminal domain (CTD) of the RNA polymerase II (Pol II) large subunit cycles through phosphorylation states that correlate with progression through the transcription cycle and regulate nascent mRNA processing. Structural analyses of yeast and mammalian CTD are hampered by their repetitive sequences. Here we identify a region of the Drosophila melanogaster CTD that is essential for Pol II function in vivo and capitalize on natural sequence variations within it to facilitate structural analysis.
View Article and Find Full Text PDFRNA polymerase II contains a repetitive, intrinsically disordered, C-terminal domain (CTD) composed of heptads of the consensus sequence YSPTSPS. The CTD is heavily phosphorylated and serves as a scaffold, interacting with factors involved in transcription initiation, elongation and termination, RNA processing and chromatin modification. Despite being a nexus of eukaryotic gene regulation, the structure of the CTD and the structural implications of phosphorylation are poorly understood.
View Article and Find Full Text PDFIntrinsically disordered protein regions (IDRs) partially or completely lack a cooperatively folded structure under native conditions, preventing their equilibrium state from being adequately described by a single structural model. As a direct consequence of their disorder, remarkably few experimental studies have quantified the ensembles IDRs adopt in solution. Here, we conduct unbiased computer simulations of the RAP74 interaction motif from the human phosphatase FCP1 in the unbound state, which provides an ensemble in quantitative agreement with both experimental NMR chemical shift information and small-angle X-ray scattering data.
View Article and Find Full Text PDFBiochemistry
February 2015
Intrinsically disordered proteins (IDPs) are broadly defined as protein regions that do not cooperatively fold into a spatially or temporally stable structure. Recent research strongly supports the hypothesis that a conserved functional role for structural disorder renders IDPs uniquely capable of functioning in biological processes such as cellular signaling and transcription. Recently, the frequency of application of rigorous mechanistic biochemistry and quantitative biophysics to disordered systems has increased dramatically.
View Article and Find Full Text PDF