Proc Natl Acad Sci U S A
May 2024
Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss.
View Article and Find Full Text PDFData presented are on carbon (C) and nitrogen (N) inputs, and changes in soil C and N in eight systems during the first eight years of a tillage-intensive organic vegetable systems study that was focused on romaine lettuce and broccoli production in Salinas Valley on the central coast region of California. The eight systems differed in organic matter inputs from cover crops and urban yard-waste compost. The cover crops included cereal rye, a legume-rye mixture, and a mustard mixture planted at two seeding rates (standard rate 1x versus high rate 3x).
View Article and Find Full Text PDFMaintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter.
View Article and Find Full Text PDFCover crops and compost are organic matter inputs that can impact soil health in tillage-intensive, high-input, organic vegetable production systems in the central coast region of California. Data are presented on soil microbial biomass (carbon and nitrogen) and soil enzymes (β-glucosidase, β-glucosaminidase, alkaline phosphatase, aspartase and L-asparaginase and dehydrogenase) from a relatively long-term organic systems experiment in Salinas, California that was focused on lettuce and broccoli production and included eight different certified organic systems. These systems differed in compost inputs, cover cropping frequency, cover crop type, and cover cropping seeding rate.
View Article and Find Full Text PDFCalifornia is the leading producer of lettuce (Lactuca sativa) for the United States and grows 77% of the country's supply. Prior to 2006, coastal California lettuce was only periodically and incidentally infected by a single tospoviruses species: Tomato spotted wilt virus (TSWV). However, beginning in 2006 and continuing through 2012, severe outbreaks of disease caused by Impatiens necrotic spot virus (INSV) have affected the coastal lettuce crop, though TSWV was also present.
View Article and Find Full Text PDFA lettuce (Lactuca sativa L.) mutant that exhibits a procumbent growth habit was identified and characterized. In two wild type (WT) genetic backgrounds, segregation patterns revealed that the mutant phenotype was controlled by a recessive allele at a single locus, which was designated weary.
View Article and Find Full Text PDF