IEEE Trans Neural Netw Learn Syst
June 2022
Nonlinear model predictive control (NMPC) of industrial processes is changeling in part because the model of the plant may not be completely known but also for being computationally demanding. This work proposes an extremely efficient reservoir computing (RC)-based control framework that speeds up the NMPC of processes. In this framework, while an echo state network (ESN) serves as the dynamic RC-based system model of a process, the practical nonlinear model predictive controller (PNMPC) simplifies NMPC by splitting the forced and the free responses of the trained ESN, yielding the so-called ESN-PNMPC architecture.
View Article and Find Full Text PDFProcess measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become unstable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory behavior of the downhole pressure measurement.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2015
This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning.
View Article and Find Full Text PDFThis work proposes a hierarchical biologically-inspired architecture for learning sensor-based spatial representations of a robot environment in an unsupervised way. The first layer is comprised of a fixed randomly generated recurrent neural network, the reservoir, which projects the input into a high-dimensional, dynamic space. The second layer learns instantaneous slowly-varying signals from the reservoir states using Slow Feature Analysis (SFA), whereas the third layer learns a sparse coding on the SFA layer using Independent Component Analysis (ICA).
View Article and Find Full Text PDF