Publications by authors named "Eric A Montoya"

Spin-orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin-orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque.

View Article and Find Full Text PDF

Asymmetric charge transport at the interface of two materials with dissimilar electrical properties, such as metal-semiconductor and p-n junctions, is the fundamental feature behind modern diode and transistor technology. Spin pumping from a ferromagnet into an adjacent nonmagnetic material is a powerful technique to generate pure-spin currents, wherein spin transport is unaccompanied by net charge transport. It is therefore interesting to study pure-spin transport at the interface of two materials with different spin transport properties.

View Article and Find Full Text PDF

Spin transfer torque magnetic random access memory (STT-MRAM) is a promising candidate for next generation memory as it is non-volatile, fast, and has unlimited endurance. Another important aspect of STT-MRAM is that its core component, the nanoscale magnetic tunneling junction (MTJ), is thought to be radiation hard, making it attractive for space and nuclear technology applications. However, studies on the effects of ionizing radiation on the STT-MRAM writing process are lacking for MTJs with perpendicular magnetic anisotropy (pMTJs) required for scalable applications.

View Article and Find Full Text PDF

Energy-efficient switching of magnetization is a central problem in nonvolatile magnetic storage and magnetic neuromorphic computing. In the past two decades, several efficient methods of magnetic switching were demonstrated including spin torque, magneto-electric, and microwave-assisted switching mechanisms. Here we experimentally show that low-dimensional magnetic chaos induced by alternating spin torque can strongly increase the rate of thermally-activated magnetic switching in a nanoscale ferromagnet.

View Article and Find Full Text PDF

Spin-orbit torques (SOTs) in multilayers of ferromagnetic (FM) and non-magnetic (NM) metals can manipulate the magnetization of the FM layer efficiently. This is employed, for example, in non-volatile magnetic memories for energy-efficient mobile electronics and spin torque nano-oscillators for neuromorphic computing. Recently, spin torque nano-oscillators also found use in microwave-assisted magnetic recording, which enables ultrahigh-capacity hard disk drives.

View Article and Find Full Text PDF

We report on magnetic damping of exchange coupled, polycrystalline Py(NiFe)|Fe and Fe|Py bilayers, prepared by sputter-deposition on an amorphous 3 nm Ta seed layer. FMR measurements are performed on varying thicknesses of the individual Py and Fe layers while keeping the total bilayer structure thickness fixed. When Fe is grown directly on Ta, there is large magnetic inhomogeneity and damping.

View Article and Find Full Text PDF