Background: High doses of ionizing radiation result in biological damage; however, the precise relationships between long-term health effects, including cancer, and low-dose exposures remain poorly understood and are currently extrapolated using high-dose exposure data. Identifying the signaling pathways and individual proteins affected at the post-translational level by radiation should shed valuable insight into the molecular mechanisms that regulate dose-dependent responses to radiation.
Principal Findings: We have identified 7117 unique phosphopeptides (2566 phosphoproteins) from control and irradiated (2 and 50 cGy) primary human skin fibroblasts 1 h post-exposure.
The DNA damage response likely includes a global phosphorylation signaling cascade process for sensing the damaged DNA condition and coordinating responses to cope with and repair the perturbed cellular state. We utilized a label-free liquid chromatography-mass spectrometry approach to evaluate changes in protein phosphorylation associated with PP5 activity during the DNA damage response. Biological replicate analyses of bleomycin-treated HeLa cells expressing either WT-PP5 or mutant inactive PP5 lead to the identification of six potential target proteins of PP5 action.
View Article and Find Full Text PDFA high-throughput approach and platform using 15 min reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking 20 reference peptides at varying concentrations from 1 ng/mL to 10 microg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected 13 out of the 20 spiked peptides that had concentrations >or=100 ng/mL.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2009
We report on the development and characterization of automated metal-free multiple-column nanoLC instrumentation for sensitive and high-throughput analysis of phosphopeptides with mass spectrometry. The system employs a multiple-column capillary LC fluidic design developed for high-throughput analysis of peptides (Anal. Chem.
View Article and Find Full Text PDFOngoing optimization of proteomic methodologies seeks to improve both the coverage and confidence of protein identifications. The optimization of sample preparation, inclusion of technical replicates (repeated instrumental analysis of the same sample), and biological replicates (multiple individual samples) are crucial in proteomic studies to avoid the pitfalls associated with single point analysis and under-sampling. Phosphopeptides were isolated from HeLa cells and analyzed by nano-reversed phase liquid chromatography electrospray ionization tandem mass spectrometry (nano-RP-LC-MS/MS).
View Article and Find Full Text PDFWe describe a four-column, high-pressure capillary liquid chromatography (LC) system for robust, high-throughput liquid chromatography-mass spectrometry (LC-MS(/MS)) analyses. This system performs multiple LC separations in parallel, but staggers each of them such that the data-rich region of each separation is sampled sequentially. By allowing nearly continuous data acquisition, this design maximizes the use of the mass spectrometer.
View Article and Find Full Text PDFWe have developed an efficient and robust high-pressure capillary LC-MS method for the identification of large numbers of metabolites in biological samples using both positive and negative ESI modes. Initial efforts focused on optimizing the separation conditions for metabolite extracts using various LC stationary phases in conjunction with multiple mobile-phase systems, as applied to the separation of 45 metabolite standards. The optimal mobile and stationary phases of those tested were determined experimentally (in terms of peak shapes, theoretical plates, retention of small, polar compounds, etc.
View Article and Find Full Text PDFTemporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput liquid chromatography (LC) system coupled with high-resolution Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, and a "universal" stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain.
View Article and Find Full Text PDFProteomics analysis based-on reversed-phase liquid chromatography (RPLC) is widely practiced; however, variations providing cutting-edge RPLC performance have generally not been adopted even though their benefits are well established. Here, we describe an automated format 20 kpsi RPLC system for proteomics and metabolomics that includes on-line coupling of micro-solid phase extraction for sample loading and allows electrospray ionization emitters to be readily replaced. The system uses 50 microm i.
View Article and Find Full Text PDFA machine that employs a novel reagent delivery technique for biomolecular synthesis has been developed. This machine separates the addressing of individual synthesis sites from the actual process of reagent delivery by using masks placed over the sites. Because of this separation, this machine is both cost-effective and scalable, and thus the time required to synthesize 384 or 1536 unique biomolecules is very nearly the same.
View Article and Find Full Text PDF