Publications by authors named "Eric A J Simko"

The C9orf72 hexanucleotide repeat expansion (HRE) is the most frequent genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we describe the pathogenic cascades that are initiated by the C9orf72 HRE DNA. The HRE DNA binds to its protein partner DAXX and promotes its liquid-liquid phase separation, which is capable of reorganizing genomic structures.

View Article and Find Full Text PDF

The long non-coding RNA NEAT1 serves as a scaffold for the assembly of paraspeckles, membraneless nuclear organelles involved in gene regulation. Paraspeckle assembly requires NEAT1 recruitment of the RNA-binding protein NONO, however the NEAT1 elements responsible for recruitment are unknown. Herein we present evidence that previously unrecognized structural features of NEAT1 serve an important role in these interactions.

View Article and Find Full Text PDF

RNA plays an active role in structural polymorphism of the genome through the formation of stable RNA•DNA hybrids (R-loops). R-loops can modulate normal physiological processes and are also associated with pathological conditions, such as those related to nucleotide repeat expansions. A guanine-rich hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) has been linked to a spectrum of neurological conditions including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).

View Article and Find Full Text PDF

A hexanucleotide repeat expansion (HRE), (GGGGCC)n, in C9orf72 is the most common genetic cause of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we identify a molecular mechanism by which structural polymorphism of the HRE leads to ALS/FTD pathology and defects. The HRE forms DNA and RNA G-quadruplexes with distinct structures and promotes RNA•DNA hybrids (R-loops).

View Article and Find Full Text PDF