Acta Biochim Biophys Sin (Shanghai)
July 2024
Transfer RNAs (tRNAs) play central roles in protein biosynthesis. Post-transcriptional RNA modifications affect tRNA function and stability. Among these modifications, RNA editing is a widespread RNA modification in three domains of life.
View Article and Find Full Text PDFIn eukaryotes, translation initiation is a highly regulated process, which combines regulatory sequences located on the messenger RNA along with acting factors like eukaryotic initiation factors (eIF). One critical step of translation initiation is the start codon recognition by the scanning 43S particle, which leads to ribosome assembly and protein synthesis. In this study, we investigated the involvement of secondary structures downstream the initiation codon in the so-called START (STructure-Assisted RNA translation) mechanism on AUG and non-AUG translation initiation.
View Article and Find Full Text PDFThroughout their entire life cycle, RNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions and very diverse functions in RNA metabolism, including splicing, translational regulation, ribosome assembly. Many RNPs remain poorly characterized due to the challenges inherent in their purification and subsequent biochemical characterization. Therefore, developing methods to isolate specific RNA-protein complexes is an important initial step toward understanding their function.
View Article and Find Full Text PDFThroughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression.
View Article and Find Full Text PDFMitochondria play multiple critical roles in cellular activity. In particular, mitochondrial translation is pivotal in the regulation of mitochondrial and cellular homeostasis. In this forum article, we discuss human mitochondrial tRNA metabolism and highlight its tight connection with various mitochondrial diseases caused by mutations in aminoacyl-tRNA synthetases, tRNAs, and tRNA-modifying enzymes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by ), disruption of which accumulated Ser-tRNA and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo.
View Article and Find Full Text PDFIn severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the non-structural protein NSP1 inhibits translation of host mRNAs by binding to the mRNA entry channel of the ribosome and, together with the 5'-untranslated region (UTR) of the viral mRNAs, allows the evasion of that inhibition. Here, we show that NSP1 mediates endonucleolytic cleavages of both host and viral mRNAs in the 5'UTR, but with different cleavage patterns. The first pattern is observed in host mRNAs with cleavages interspersed regularly and close to the 5' cap (6-11 nt downstream of the cap).
View Article and Find Full Text PDFtRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules.
View Article and Find Full Text PDFThe synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated.
View Article and Find Full Text PDFSARS-CoV-2 is a betacoronavirus that emerged in China in December 2019 and which is the causative agent of the Covid-19 pandemic. This enveloped virus contains a large positive-sense single-stranded RNA genome. In this review, we summarize the current knowledge on the molecular mechanisms for the translation of both viral transcripts and cellular messenger RNAs.
View Article and Find Full Text PDFThe 5'UTR part of coronavirus genomes plays key roles in the viral replication cycle and translation of viral mRNAs. The first 75-80 nt, also called the leader sequence, are identical for genomic mRNA and subgenomic mRNAs. Recently, it was shown that cooperative actions of a 5'UTR segment and the nonstructural protein NSP1 are essential for both the inhibition of host mRNAs and for specific translation of viral mRNAs.
View Article and Find Full Text PDFDuring embryogenesis, Hox mRNA translation is tightly regulated by a sophisticated molecular mechanism that combines two RNA regulons located in their 5'UTR. First, an internal ribosome entry site (IRES) enables cap-independent translation. The second regulon is a translation inhibitory element or TIE, which ensures concomitant cap-dependent translation inhibition.
View Article and Find Full Text PDFRNA folds into secondary structures that can serve in understanding various RNA functions (Weeks KM. Curr Opin Struct Biol 20(3):295-304, 2010). Chemical probing is a method that enables the characterization of RNA secondary structures using chemical reagents that specifically modify RNA nucleotides that are located in single-stranded areas.
View Article and Find Full Text PDFIn eukaryotes, various alternative translation initiation mechanisms have been unveiled for the translation of specific mRNAs. Some do not conform to the conventional scanning-initiation model. Translation initiation of histone H4 mRNA combines both canonical (cap-dependent) and viral initiation strategies (no-scanning, internal recruitment of initiation factors).
View Article and Find Full Text PDFMutations of the genes encoding aminoacyl-tRNA synthetases are highly associated with various central nervous system disorders. Recurrent mutations, including c.5A>G, p.
View Article and Find Full Text PDFSARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel.
View Article and Find Full Text PDFThe SARS-CoV-2, a positive-sense single-stranded RNA Coronavirus, is a global threat to human health. Thus, understanding its life cycle mechanistically would be important to facilitate the design of antiviral drugs. A key aspect of viral progression is the synthesis of viral proteins by the ribosome of the human host.
View Article and Find Full Text PDFTranslation fidelity relies essentially on the ability of ribosomes to accurately recognize triplet interactions between codons on mRNAs and anticodons of tRNAs. To determine the codon-anticodon pairs that are efficiently accepted by the eukaryotic ribosome, we took advantage of the IRES from the intergenic region (IGR) of the Cricket Paralysis Virus. It contains an essential pseudoknot PKI that structurally and functionally mimics a codon-anticodon helix.
View Article and Find Full Text PDFDecoding of the 61 sense codons of the genetic code requires a variable number of tRNAs that establish codon-anticodon interactions. Thanks to the wobble base pairing at the third codon position, less than 61 different tRNA isoacceptors are needed to decode the whole set of codons. On the tRNA, a subtle distribution of nucleoside modifications shapes the anticodon loop structure and participates to accurate decoding and reading frame maintenance.
View Article and Find Full Text PDFCap-dependent translation initiation begins by assembly of a pre-initiation ribosomal complex that scans the 5' Untranslated Region in order to localise the start codon. During this process, RNA secondary structures are melted by RNA helicases. Guenther et al reported that the yeast helicase Ded1, an orthologue of the mammalian DDX3 helicase, is responsible for this activity.
View Article and Find Full Text PDFIn eukaryotes, cap-dependent translation initiation is a sophisticated process that requires numerous trans-acting factors, the eukaryotic Initiation Factors (eIFs). Their main function is to assist the ribosome for accurate AUG start codon recognition. The whole process requires a 5'-3' scanning step and is therefore highly dynamic.
View Article and Find Full Text PDFSeveral selenoprotein mRNAs undergo 5' cap maturation events whereby their classical monomethylated mG cap becomes trimethylated (mG) by the trimethylguanosine synthase 1 (Tgs1). Here, we describe immunoprecipitation methods for the detection of endogenous mG-capped selenoprotein mRNAs from total cell extracts or after polysome fractionation of cytoplasmic extracts. We have also developed a method for the in vitro cap hypermethylation of selenoprotein mRNA transcripts using purified Tgs1 enzyme.
View Article and Find Full Text PDFCricket paralysis virus (CrPV) is a dicistrovirus. Its positive-sense single-stranded RNA genome contains two internal ribosomal entry sites (IRESs). The 5' untranslated region (5'UTR) IRES5'UTR mediates translation of non-structural proteins encoded by ORF1 whereas the well-known intergenic region (IGR) IRESIGR is required for translation of structural proteins from open reading frame 2 in the late phase of infection.
View Article and Find Full Text PDFEukaryotic mRNAs often contain a Kozak sequence that helps tether the ribosome to the AUG start codon. The mRNA of histone H4 (h4) does not undergo classical ribosome scanning but has evolved a specific tethering mechanism. The cryo-EM structure of the rabbit ribosome complex with mouse h4 shows that the mRNA forms a folded, repressive structure at the mRNA entry site on the 40S subunit next to the tip of helix 16 of 18S ribosomal RNA (rRNA).
View Article and Find Full Text PDF