Publications by authors named "Eri Yanagida"

Background: Despite the increased rate of complete response to initial chemotherapy, most patients with advanced ovarian cancer relapse and succumb to progressive disease. Dendritic cell (DC)-based immunotherapy has been developed as a novel strategy for generating antitumor immunity as part of cancer treatments. The present study aimed to assess the feasibility and clinical effects of DC therapy for recurrent ovarian cancer (ROC).

View Article and Find Full Text PDF

Background: The aim of this retrospective study was to clarify the safety and efficacy of dendritic cell (DC)-based immunotherapy targeting synthesized peptides, Wilms tumor 1 (WT1) and Mucin 1, cell surface associated (MUC1) for biliary tract cancers (BTCs).

Methods: Sixty-five patients who had nonresectable, recurrent, or metastatic BTCs and received the DC-based immunotherapy were selected for the study. DCs were pulsed with WT1 and/or MUC1.

View Article and Find Full Text PDF

Human bone marrow-derived mesenchymal stem cells (hMSCs) have the potential to differentiate into several types of cells. Calcium ions (Ca(2+)) play an important role in the differentiation and proliferation of hMSCs. We have demonstrated that spontaneous [Ca(2+)](i) oscillations occur without agonist stimulation in hMSCs.

View Article and Find Full Text PDF

Cardiomyocytes derived from mouse embryonic stem (mES) cells have been demonstrated to exhibit a time-dependent expression of ion channels and signal transduction pathways in electrophysiological studies. However, ion transporters, such as Na+/K+ ATPase (Na+ pump) or Na+/Ca2+ exchanger, which play crucial roles for cardiac function, have not been well studied in this system. In this study, we investigated the functional expression of Na+/K+ ATPase and Na+/Ca2+ exchanger in mES cells during in vitro differentiation into cardiomyocytes, as well as the functional coupling between the two transporters.

View Article and Find Full Text PDF

Mouse embryonic stem (mES) cells have the potential to differentiate into all types of cells, but the physiological properties of undifferentiated mES cells, including Ca2+ signaling systems, are not fully understood. In this study, we investigated Ca2+ signaling pathways in mES cells by using confocal Ca2+ imaging systems, patch clamp techniques and RT-PCR. The stimulations with ATP and histamine (His) induced a transient increase of intracellular Ca2+ concentration ([Ca2+]i), which were prevented by the pretreatment of 2-amino-ethoxydiphenyl borate (2-APB), a blocker for inositol-1,4,5-triphosphate receptors (InsP3Rs).

View Article and Find Full Text PDF