Background/objective: Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents are the first-line treatment for exudative age-related macular degeneration (nAMD). Due to the limitations of these standard therapies, targeting alternative mechanisms of action may be helpful for treatment of this very common disease. Here, we investigated an anti-fibroblast growth factor-2 (FGF2) aptamer, umedaptanib pegol, a next generation therapeutic for the treatment of nAMD.
View Article and Find Full Text PDFWhen translating mRNAs are cleaved in protein-coding regions, 5' fragments of mRNAs are detached from stop codons (i.e., nonstop mRNAs) and protected from 3'-5' exonucleases by ribosomes stalled at the 3' termini.
View Article and Find Full Text PDFAptamers are short single-stranded nucleic acid molecules that are selected in vitro from a large random sequence library based on their high and specific affinity to a target molecule by a process known as SELEX. Cell-SELEX that employs whole living cells overexpressing the defined cell surface proteins (for selection) and appropriate mock cells (for counter-selection) has been widely used as a valid and feasible method for generating aptamers against specific cell surface proteins. However, the endogenous expression of target proteins in mock cells or the heterogeneity of surface proteins between selection and counter-selection cells often impeded the isolation of proper aptamers against target proteins.
View Article and Find Full Text PDFWhen ribosomes encounter mRNAs lacking stop codons, two quality-control machineries, NSD for nonstop mRNA decay and ribosome quality control (RQC) for co-translational degradation of the nonstop protein by the proteasome, are triggered to eliminate aberrant molecules. In yeast, it is known that Dom34 (a homolog of eRF1) and Ltn1 (an E3 ubiquitin ligase) play crucial roles in NSD and RQC, respectively, by triggering ribosome rescue at the 3' end of nonstop mRNAs and proteasome-dependent polypeptide degradation. Here we confirmed the essential role of Ltn1 in RQC for nonstop products in Drosophila cells, and further uncovered a functional role of ABCE1, a eukaryotic ribosome recycling factor, in NSD in Drosophila cells.
View Article and Find Full Text PDFInterleukin-17 (IL-17) is a pro-inflammatory cytokine produced primarily by a subset of CD4(+)T cells, called Th17 cells, that is involved in host defense, inflammation and autoimmune disorders. The two most structurally related IL-17 family members, IL-17A and IL-17F, form homodimeric (IL-17A/A, IL-17F/F) and heterodimeric (IL-17A/F) complexes. Although the biological significance of IL-17A and IL-17F have been investigated using respective antibodies or gene knockout mice, the functional study of IL-17A/F heterodimeric form has been hampered by the lack of an inhibitory tool specific to IL-17A/F.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) silence retrotransposons in Drosophila germ lines by associating with the PIWI proteins Argonaute 3 (AGO3), Aubergine (Aub) and Piwi. piRNAs in Drosophila are produced from intergenic repetitive genes and piRNA clusters by two systems: the primary processing pathway and the amplification loop. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner.
View Article and Find Full Text PDFAML1-MTG8 is a chimeric transcription factor produced by t(8;21) chromosome translocation and causes AML. AML1-MTG8 acts as a dominant negative effector on normal AML1 protein, a key transcriptional regulator of hematopoietic differentiation, but its precise mechanism is not known. To analyze the function of AML1-MTG8 in leukemic cells and to explore the possibility of AML1-MTG8-targeted therapy, we designed nine small interfering RNAs (siRNAs) targeting a 25-nucleotide region spanning the fusion point of AML1 and MTG8.
View Article and Find Full Text PDF