The purpose of the present study was to identify mitochondrial DNA (mtDNA) polymorphisms and rare variants that associate with elite Japanese athletic status. Subjects comprised 185 elite Japanese athletes who had represented Japan at international competitions (that is, 100 endurance/middle-power athletes: EMA; 85 sprint/power athletes: SPA) and 672 Japanese controls (CON). The entire mtDNA sequences (16 569 bp) were analyzed by direct sequencing.
View Article and Find Full Text PDFNumerous reports of genetic associations with performance-related phenotypes have been published over the past three decades but there has been limited progress in discovering and characterising the genetic contribution to elite/world-class performance, mainly owing to few coordinated research efforts involving major funding initiatives/consortia and the use primarily of the candidate gene analysis approach. It is timely that exercise genomics research has moved into a new era utilising well-phenotyped, large cohorts and genome-wide technologies--approaches that have begun to elucidate the genetic basis of other complex traits/diseases. This review summarises the most recent and significant findings from sports genetics and explores future trends and possibilities.
View Article and Find Full Text PDFBackground: Senescence-accelerated mice (SAM) are a series of mouse strains originally derived from unexpected crosses between AKR/J and unknown mice, from which phenotypically distinct senescence-prone (SAMP) and -resistant (SAMR) inbred strains were subsequently established. Although SAMP strains have been widely used for aging research focusing on their short life spans and various age-related phenotypes, such as immune dysfunction, osteoporosis, and brain atrophy, the responsible gene mutations have not yet been fully elucidated.
Results: To identify mutations specific to SAMP strains, we performed whole exome sequencing of 6 SAMP and 3 SAMR strains.
Purpose: Polymorphic variation in the angiotensin-converting enzyme (ACE) and α-actinin-3 (ACTN3) genes has been reported to be associated with endurance and/or power-related human performance. Our aim was to investigate whether polymorphisms in ACE and ACTN3 are associated with elite swimmer status in Caucasian and East Asian populations.
Methods: ACE I/D and ACTN3 R577X genotyping was carried out for 200 elite Caucasian swimmers from European, Commonwealth, Russian, and American cohorts (short and middle distance, ≤400 m, n = 130; long distance, >400 m, n = 70) and 326 elite Japanese and Taiwanese swimmers (short distance, ≤100 m, n = 166; middle distance, 200-400 m, n = 160).
Hearing loss (HL) is the most common sensory disorder in humans. Many patients with mitochondrial diseases have sensorineural HL (SNHL). The HL of these patients manifests as a consequence of either syndromic or nonsyndromic mitochondrial diseases.
View Article and Find Full Text PDFBr J Sports Med
December 2011
Purpose: It has been hypothesised that certain mitochondrial haplogroups, which are defined by the presence of a characteristic cluster of tightly linked mitochondrial DNA polymorphisms, would be associated with elite Japanese athlete status. To examine this hypothesis, the frequencies of mitochondrial haplogroups found in elite Japanese athletes were compared with those in the general Japanese population.
Methods: Subjects comprised 139 Olympic athletes (79 endurance/middle-power athletes (EMA), 60 sprint/power athletes (SPA)) and 672 controls (CON).