Publications by authors named "Eri Allen"

During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown.

View Article and Find Full Text PDF

Pneumonia is a major public health concern, causing significant morbidity and mortality annually despite the broad use of antimicrobial agents. Underlying many of the severe sequelae of acute lung infections is dysfunction of the immune response, which remains incompletely understood yet is an attractive target of adjunct therapy in pneumonia. Here, we investigate the role of oncostatin M (OSM), a pleiotropic cytokine of the interleukin-6 (IL-6) family, and how its signaling modulates multiple innate immune pathways during pneumonia.

View Article and Find Full Text PDF

Pneumonia and sepsis are distinct but integrally linked public health concerns. The hepatic acute-phase response (APR), which is largely dependent on transcription factors NF-κB RelA and STAT3, is a hallmark of these pathologies and other injurious conditions. Inactivation of the APR can promote liver injury, a frequently observed organ dysfunction during sepsis.

View Article and Find Full Text PDF

In bacterial pneumonia, lung damage resulting from epithelial cell injury is a major contributor to the severity of disease and, in some cases, can lead to long-term sequelae, especially in the setting of severe lung injury or acute respiratory distress syndrome. Leukemia inhibitory factor (LIF), a member of the IL-6 cytokine family, is a critical determinant of lung tissue protection during pneumonia, but the cellular sources of LIF and the signaling pathways leading to its production in the infected lung are not known. Here, we demonstrate that lung epithelium, specifically alveolar type II cells, is the predominant site of LIF transcript induction in pneumonic mouse lungs.

View Article and Find Full Text PDF

Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear.

View Article and Find Full Text PDF

Acute bacterial pneumonia is a significant public health concern worldwide. Understanding the signals coordinating lung innate immunity may foster the development of therapeutics that limit tissue damage and promote host defense. We have previously shown that lung messenger RNA expression of the IL-6 family cytokine oncostatin-M (OSM) is significantly elevated in response to bacterial stimuli.

View Article and Find Full Text PDF

The hepatic acute-phase response (APR), stimulated by injury or inflammation, is characterized by significant changes in circulating acute-phase protein (APP) concentrations. Although individual functions of liver-derived APPs are known, the net consequence of APP changes is unclear. Pneumonia, which induces the APR, causes an inflammatory response within the airspaces that is coordinated largely by alveolar macrophages and is typified by cytokine production, leukocyte recruitment, and plasma extravasation, the latter of which may enable delivery of hepatocyte-derived APPs to the infection site.

View Article and Find Full Text PDF

Lung infections represent a tremendous disease burden and a leading cause of acute lung injury. STAT3 signaling is essential for controlling lung injury during pneumonia. We previously identified LIF as a prominent STAT3-activating cytokine expressed in the airspaces of pneumonic lungs, but its physiological significance in this setting has never been explored.

View Article and Find Full Text PDF

The acute phase response is an evolutionarily conserved reaction in which physiological stress triggers the liver to remodel the blood proteome. Although thought to be involved in immune defense, the net biological effect of the acute phase response remains unknown. As the acute phase response is stimulated by diverse cytokines that activate either NF-κB or STAT3, we hypothesized that it could be eliminated by hepatocyte-specific interruption of both transcription factors.

View Article and Find Full Text PDF