Oxygen reduction reaction (ORR) kinetics is critically dependent on the precise modulation of the interactions between the key oxygen intermediates and catalytic active sites. Herein, a novel electrocatalyst is reported, featuring nitrogen-doped carbon-supported ultra-small copper oxide nanoparticles with the broken-symmetry C coordination filed sites, achieved by a mild γ-ray radiation-induced method. The as-synthesized catalyst exhibits an excellent ORR activity with a half-wave potential of 0.
View Article and Find Full Text PDFAdvancements in single-atom-based catalysts are crucial for enhancing oxygen evolution reaction (OER) performance while reducing precious metal usage. A comprehensive understanding of underlying mechanisms will expedite this progress further. Here we report Ir single atoms coordinated out-of-plane with dimethylimidazole (MI) on CoFe hydroxide (Ir/(Co,Fe)-OH/MI).
View Article and Find Full Text PDFThe realization of high energy is of great importance to unlock the practical potential of zinc-iodine batteries. However, significant challenges, such as low iodine loading (mostly less than 50 wt%), restricted iodine reutilization, and severe structural pulverization during cycling, compromise its intrinsic features. This study introduces an optimized, fully zincified zinc iodide loaded onto a hierarchical carbon scaffold with high active component loading and content (82 wt%) to prepare a thick cathode for enabling high-energy Zn-I batteries.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2024
The high theoretical energy density (1274 Wh kg) and high safety enable the all-solid-state Na-S batteries with great promise for stationary energy storage system. However, the uncontrollable solid-liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na-S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling.
View Article and Find Full Text PDFLi-O batteries (LOBs) are considered as one of the most promising energy storage devices due to their ultrahigh theoretical energy density, yet they face the critical issues of sluggish cathode redox kinetics during the discharge and charge processes. Here we report a direct synthetic strategy to fabricate a single-atom alloy catalyst in which single-atom Pt is precisely dispersed in ultrathin Pd hexagonal nanoplates (PtPd). The LOB with the PtPd cathode demonstrates an ultralow overpotential of 0.
View Article and Find Full Text PDFThe anode corrosion induced by the harsh acidic and oxidative environment greatly restricts the lifespan of catalysts. Here, we propose an antioxidation strategy to mitigate Ir dissolution by triggering strong electronic interaction via elaborately constructing a heterostructured Ir-Sn pair-site catalyst. The formation of Ir-Sn dual-site at the heterointerface and the resulting strong electronic interactions considerably reduce -band holes of Ir species during both the synthesis and the oxygen evolution reaction processes and suppress their overoxidation, enabling the catalyst with substantially boosted corrosion resistance.
View Article and Find Full Text PDFNickel-based catalysts have been regarded as one of the most promising electrocatalysts for urea oxidation reaction (UOR), however, their activity is largely limited by the inevitable self-oxidation reaction of Ni species (NSOR) during the UOR. Here, we proposed an interface chemistry modulation strategy to trigger the occurrence of UOR before the NSOR via constructing a 2D/2D heterostructure that consists of ultrathin NiO anchored Ru-Co dual-atom support (Ru-Co DAS/NiO). Operando spectroscopic characterizations confirm this unique triggering mechanism on the surface of Ru-Co DAS/NiO.
View Article and Find Full Text PDFThe development of rechargeable Na-S batteries is very promising, thanks to their considerably high energy density, abundance of elements, and low costs and yet faces the issues of sluggish redox kinetics of S species and the polysulfide shuttle effect as well as Na dendrite growth. Following the theory-guided prediction, the rare-earth metal yttrium (Y)-N unit has been screened as a favorable Janus site for the chemical affinity of polysulfides and their electrocatalytic conversion, as well as reversible uniform Na deposition. To this end, we adopt a metal-organic framework (MOF) to prepare a single-atom hybrid with Y single atoms being incorporated into the nitrogen-doped rhombododecahedron carbon host (Y SAs/NC), which features favorable Janus properties of sodiophilicity and sulfiphilicity and thus presents highly desired electrochemical performance when used as a host of the sodium anode and the sulfur cathode of a Na-S full cell.
View Article and Find Full Text PDFThe renewable energy-powered electrolytic reduction of carbon dioxide (CO) to methane (CH) using water as a reaction medium is one of the most promising paths to store intermittent renewable energy and address global energy and sustainability problems. However, the role of water in the electrolyte is often overlooked. In particular, the slow water dissociation kinetics limits the proton-feeding rate, which severely damages the selectivity and activity of the methanation process involving multiple electrons and protons transfer.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2022
Manipulating the coordination environment of the active center via anion modulation to reveal tailored activity and selectivity has been widely achieved, especially for carbon-based single-atom site catalysts (SACs). However, tuning ligand fields of the active center by single-site metal cation regulation and identifying the effects on the resulting electronic configuration is seldom explored. Herein, we propose a single-site Ru cation coordination strategy to engineer the electronic properties by constructing a Ru/LiCoO SAC with atomically dispersed Ru-Co pair sites.
View Article and Find Full Text PDFManeuvering the architecture and composition of semiconductors is essential to optimizing their performance in photocatalytic solar-to-fuel conversion. Here, we show that ion exchange, having a disparate mechanism with direct nucleation and growth of semiconductor crystals, can provide a new platform for rational control over the geometry and electronic structures of chalcogenide semiconductor photocatalysts. As a demonstration, the ZnSe nanocubes possessing a hollowed architecture and doped with a controllable amount of Ag ions are accessed via sequential ion exchange.
View Article and Find Full Text PDFThe in-depth understanding of local atomic environment-property relationships of p-block metal single-atom catalysts toward the 2 e oxygen reduction reaction (ORR) has rarely been reported. Here, guided by first-principles calculations, we develop a heteroatom-modified In-based metal-organic framework-assisted approach to accurately synthesize an optimal catalyst, in which single In atoms are anchored by combined N,S-dual first coordination and B second coordination supported by the hollow carbon rods (In SAs/NSBC). The In SAs/NSBC catalyst exhibits a high H O selectivity of above 95 % in a wide range of pH.
View Article and Find Full Text PDFHere, the photocatalytic CO reduction reaction (CO RR) with the selectivity of carbon products up to 100% is realized by completely suppressing the H evolution reaction under visible light (λ > 420 nm) irradiation. To target this, plasmonic Au/CdSe dumbbell nanorods enhance light harvesting and produce a plasmon-enhanced charge-rich environment; peripheral Cu O provides rich active sites for CO reduction and suppresses the hydrogen generation to improve the selectivity of carbon products. The middle CdSe serves as a bridge to transfer the photocharges.
View Article and Find Full Text PDFThe Co/N-doped carbon material, as an important electrocatalytic material, has been attracted intense interest in ORR and Zn-air battery. Here, we report an efficient Co@N-doped carbon catalyst (Co@N-C-1) obtained by pyrolysis of ZIF precursor with 2-aminobenzimidazole. The introduction of 2-aminobenzimidazole results in the formation of hierarchical meso/microporous structure of the as-prepared Co@N-C-1, effectively avoiding the aggregation of Co nanoparticles during pyrolysis and the higher N content, which contributes to enhance the ORR electrocatalytic activities.
View Article and Find Full Text PDFThe electrocatalytic reduction reaction of CO (CORR) is a promising strategy to promote the global carbon balance and combat global climate change. Herein, exclusive Bi-N sites on porous carbon networks can be achieved through thermal decomposition of a bismuth-based metal-organic framework (Bi-MOF) and dicyandiamide (DCD) for CORR. Interestingly, in situ environmental transmission electron microscopy (ETEM) analysis not only directly shows the reduction from Bi-MOF into Bi nanoparticles (NPs) but also exhibits subsequent atomization of Bi NPs assisted by the NH released from the decomposition of DCD.
View Article and Find Full Text PDFPromoting surface strains in heterogeneous catalysts and heteroatomic interactions in alloying offer an effective strategy for the development of electrocatalysts with greatly enhanced activity. In this work, we design platinum-silver nanotubes (PtAg NTs) with tunable surface compositions by a controlled galvanic replacement reaction of well-defined Ag nanowires (NWs). The optimized and porous PtAg NTs (PtAg-4 NTs), with the Pt5Ag3 surface composition and (111) facet-dominant surface features, exhibit an extraordinary oxygen reduction reaction (ORR) activity that reaches a specific activity of 1.
View Article and Find Full Text PDFCobalt oxide hollow nanododecahedra (Co3O4-HND) is synthesized by a facile thermal transformation of cobalt-based metal-organic framework (Co-MOF, ZIF-67) template. The morphology and properties of the Co3O4-HND are characterized by a set of techniques, including transmission electron microscope (TEM), powder X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunner-Emmet-Teller (BET). When tested as a non-enzymatic electrocatalyst for glucose oxidation reaction, the Co3O4-HND exhibits a high activity and shows an outstanding performance for determining glucose with a wide window of 2.
View Article and Find Full Text PDF