Publications by authors named "Erhard Rahm"

Article Synopsis
  • * It involved surgical samples from EGC patients with a 10-year follow-up, using specialized genomic panels to examine molecular characteristics and pathway instability scores.
  • * Key findings indicated that the aggressive Pen A subtype has more ARID1A mutations and greater genetic instability, while LRP1B alterations were linked to a higher risk of relapse or death, suggesting potential markers for prognosis in EGC patients.
View Article and Find Full Text PDF

Smartwatch health sensor data are increasingly utilized in smart health applications and patient monitoring, including stress detection. However, such medical data often comprise sensitive personal information and are resource-intensive to acquire for research purposes. In response to this challenge, we introduce the privacy-aware synthetization of multi-sensor smartwatch health readings related to moments of stress, employing Generative Adversarial Networks (GANs) and Differential Privacy (DP) safeguards.

View Article and Find Full Text PDF

Background: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible.

View Article and Find Full Text PDF

Schema/ontology matching consists in finding matches between types, properties and entities in heterogeneous sources of data in order to integrate them, which has become increasingly relevant with the development of web technologies and open data initiatives. One of the involved tasks is the matching of data properties, which attempts to try to find correspondences between the attributes of the entities. This is challenging due to the at times different names of equivalent properties.

View Article and Find Full Text PDF

Background: Data analysis for biomedical research often requires a record linkage step to identify records from multiple data sources referring to the same person. Due to the lack of unique personal identifiers across these sources, record linkage relies on the similarity of personal data such as first and last names or birth dates. However, the exchange of such identifying data with a third party, as is the case in record linkage, is generally subject to strict privacy requirements.

View Article and Find Full Text PDF

Introduction: This article is part of the Focus Theme of Methods of Information in Medicine on the German Medical Informatics Initiative. "Smart Medical Information Technology for Healthcare (SMITH)" is one of four consortia funded by the German Medical Informatics Initiative (MI-I) to create an alliance of universities, university hospitals, research institutions and IT companies. SMITH's goals are to establish Data Integration Centers (DICs) at each SMITH partner hospital and to implement use cases which demonstrate the usefulness of the approach.

View Article and Find Full Text PDF

Biomedical ontologies are heavily used to annotate data, and different ontologies are often interlinked by ontology mappings. These ontology-based mappings and annotations are used in many applications and analysis tasks. Since biomedical ontologies are continuously updated dependent artifacts can become outdated and need to undergo evolution as well.

View Article and Find Full Text PDF

Objective: To address the problem of mapping local laboratory terminologies to Logical Observation Identifiers Names and Codes (LOINC). To study different ontology matching algorithms and investigate how the probability of term combinations in LOINC helps to increase match quality and reduce manual effort.

Materials And Methods: We proposed two matching strategies: full name and multi-part.

View Article and Find Full Text PDF

Motivation: Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings.

View Article and Find Full Text PDF

Life science ontologies evolve frequently to meet new requirements or to better reflect the current domain knowledge. The development and adaptation of large and complex ontologies is typically performed collaboratively by several curators. To effectively manage the evolution of ontologies it is essential to identify the difference (Diff) between ontology versions.

View Article and Find Full Text PDF

Life science ontologies substantially change over time to meet the requirements of their users and to include the newest domain knowledge. Thus, an important task is to know what has been modified between two versions of an ontology (diff). This diff should contain all performed changes as compact and understandable as possible.

View Article and Find Full Text PDF

Background: Ontologies are increasingly used to structure and semantically describe entities of domains, such as genes and proteins in life sciences. Their increasing size and the high frequency of updates resulting in a large set of ontology versions necessitates efficient management and analysis of this data.

Results: We present GOMMA, a generic infrastructure for managing and analyzing life science ontologies and their evolution.

View Article and Find Full Text PDF

Background: Numerous ontologies have recently been developed in life sciences to support a consistent annotation of biological objects, such as genes or proteins. These ontologies underlie continuous changes which can impact existing annotations. Therefore, it is valuable for users of ontologies to study the stability of ontologies and to see how many and what kind of ontology changes occurred.

View Article and Find Full Text PDF

Background: Genome-wide expression, sequence and association studies typically yield large sets of gene candidates, which must then be further analysed and interpreted. Information about these genes is increasingly being captured and organized in ontologies, such as the Gene Ontology. Relationships between the gene sets identified by experimental methods and biological knowledge can be made explicit and used in the interpretation of results.

View Article and Find Full Text PDF

One goal in modern medicine is to increase the treatment quality. A major step towards this aim is to support the execution of standardized, guideline-based clinical protocols, which are used in many medical domains, e.g.

View Article and Find Full Text PDF