Publications by authors named "Erhan I Altinoglu"

Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells.

View Article and Find Full Text PDF

Leukemia is one of the most common and aggressive adult cancers, as well as the most prevalent childhood cancer. Leukemia is a cancer of the hematological system and can be divided into a diversity of unique malignancies based on the onset of the disease as well as the specific cell lineages involved. Cancer stem cells, including recently identified leukemia stem cells (LSCs), are hypothesized to be responsible for cancer development, relapse, and resistance to treatment, and new therapeutics targeting these cellular populations are urgently needed.

View Article and Find Full Text PDF

The ability to apply nanomaterials as targeted delivery agents for drugs and other therapeutics holds promise for a wide variety of diseases, including many types of cancer. A nanodelivery vehicle must demonstrate in vivo efficacy, diminished or no toxicity, stability, improved pharmacokinetics, and controlled-release kinetics. In this issue, Lee et al.

View Article and Find Full Text PDF

The early diagnosis of cancer is the critical element in successful treatment and long-term favorable patient prognoses. The high rate of mortality is mainly attributed to the tendency for late diagnoses as symptoms may not occur until the disease has metastasized, as well as the lack of effective systemic therapies. Late diagnosis is often associated with the lack of timely sensitive imaging modalities.

View Article and Find Full Text PDF
Near infrared imaging with nanoparticles.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

December 2010

Near infrared imaging has presented itself as a powerful diagnostic technique with potential to serve as a minimally invasive, nonionizing method for sensitive, deep tissue diagnostic imaging. This potential is further realized with the use of nanoparticle (NP)-based near infrared (NIR) contrast agents that are not prone to the rapid photobleaching and instability of their organic counterparts. This review discusses applications that have successfully demonstrated the utility of nanoparticles for NIR imaging, including NIR-emitting semiconductor quantum dots (QDs), resonant gold nanoshells, and dye-encapsulating nanoparticles.

View Article and Find Full Text PDF

Paradigm-shifting modalities to more efficiently deliver drugs to cancerous lesions require the following attributes: nanoscale-size, targetability, and stability under physiological conditions. Often, these nanoscale drug delivery vehicles are limited due to agglomeration, poor solubility, or cytotoxicity. Thus, we have designed a methodology to encapsulate hydrophobic antineoplastic chemotherapeutics within a 20-30 nm diameter, pH-responsive, nonagglomerating, nontoxic calcium phosphate nanoparticle matrix.

View Article and Find Full Text PDF

Encapsulation of imaging agents and drugs in calcium phosphate nanoparticles (CPNPs) has potential as a nontoxic, bioresorbable vehicle for drug delivery to cells and tumors. The objectives of this study were to develop a calcium phosphate nanoparticle encapsulation system for organic dyes and therapeutic drugs so that advanced fluoresence methods could be used to assess the efficiency of drug delivery and possible mechanisms of nanoparticle bioabsorption. Highly concentrated CPNPs encapsulating a variety of organic fluorophores were successfully synthesized.

View Article and Find Full Text PDF

Early detection is a crucial element for the timely diagnosis and successful treatment of all human cancers but is limited by the sensitivity of current imaging methodologies. We have synthesized and studied bioresorbable calcium phosphate nanoparticles (CPNPs) in which molecules of the near-infrared (NIR) emitting fluorophore, indocyanine green (ICG), are embedded. The ICG-CPNPs demonstrate exceptional colloidal and optical characteristics.

View Article and Find Full Text PDF