Linking neurobiology to relatively stable individual differences in cognition, emotion, motivation, and behavior can require large sample sizes to yield replicable results. Given the nature of between-person research, sample sizes at least in the hundreds are likely to be necessary in most neuroimaging studies of individual differences, regardless of whether they are investigating the whole brain or more focal hypotheses. However, the appropriate sample size depends on the expected effect size.
View Article and Find Full Text PDFAn increased prevalence of mixed-handedness has been reported in several neurodevelopmental and psychiatric disorders. Unfortunately, there is high between-study variability in the definition of mixed-handedness, leading to a major methodological problem in clinical laterality research and endangering replicability and comparability of research findings. Adding to this challenge is the fact that sometimes researchers use the concepts of mixed-handedness and ambidexterity interchangeably.
View Article and Find Full Text PDFBackground: Myotonic dystrophy is a multisystem disorder characterized by widespread organic involvement including central nervous system symptoms. Although myotonic dystrophy disease types 1 (DM1) and 2 (DM2) cover a similar spectrum of symptoms, more pronounced clinical and brain alterations have been described in DM1. Here, we investigated brain volumetric and white matter alterations in both disease types and compared to healthy controls (HC).
View Article and Find Full Text PDFPrevious research investigating relations between general intelligence and graph-theoretical properties of the brain's intrinsic functional network has yielded contradictory results. A promising approach to tackle such mixed findings is multi-center analysis. For this study, we analyzed data from four independent data sets (total N > 2000) to identify robust associations amongst samples between g factor scores and global as well as node-specific graph metrics.
View Article and Find Full Text PDFFunctional brain imaging studies in humans suggest involvement of the cerebellum in fear conditioning but do not allow conclusions about the functional significance. The main aim of the present study was to examine whether patients with cerebellar degeneration show impaired fear conditioning and whether this is accompanied by alterations in cerebellar cortical activations. To this end, a 2 d differential fear conditioning study was conducted in 20 cerebellar patients and 21 control subjects using a 7 tesla (7 T) MRI system.
View Article and Find Full Text PDFBackground & Aims: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies.
Methods: Cholestasis was induced by bile duct ligation (BDL) in mice.
Introduction: There is a large interindividual variability in cognitive functioning with increasing age due to biological and lifestyle factors. One of the most important lifestyle factors is the level of physical fitness (PF). The link between PF and brain activity is widely accepted but the specificity of cognitive functions affected by physical fitness across the adult lifespan is less understood.
View Article and Find Full Text PDFIntelligence is highly heritable. Genome-wide association studies (GWAS) have shown that thousands of alleles contribute to variation in intelligence with small effect sizes. Polygenic scores (PGS), which combine these effects into one genetic summary measure, are increasingly used to investigate polygenic effects in independent samples.
View Article and Find Full Text PDFFew tract-based spatial statistics (TBSS) studies have investigated the relations between intelligence and white matter microstructure in healthy (young) adults, and those have yielded mixed observations, yet white matter is fundamental for efficient and accurate information transfer throughout the human brain. We used a multicenter approach to identify white matter regions that show replicable structure-function associations, employing data from 4 independent samples comprising over 2000 healthy participants. TBSS indicated 188 voxels exhibited significant positive associations between g factor scores and fractional anisotropy (FA) in all 4 data sets.
View Article and Find Full Text PDFPersonality neuroscience is the study of persistent psychological individual differences, typically in the general population, using neuroscientific methods. It has the potential to shed light on the neurobiological mechanisms underlying individual differences and their manifestation in ongoing behavior and experience. The field was inaugurated many decades ago, yet has only really gained momentum in the last two, as suitable technologies have become widely available.
View Article and Find Full Text PDFBackground: Previous research revealed several biological and environmental factors modulating cognitive functioning over a human's lifespan. However, the relationships and interactions between biological factors (eg, genetic polymorphisms, immunological parameters, metabolic products, or infectious diseases) and environmental factors (eg, lifestyle, physical activity, nutrition, and work type or stress at work) as well as their impact on cognitive functions across the lifespan are still poorly understood with respect to their complexity.
Objective: The goal of the Dortmund Vital Study is to validate previous hypotheses as well as generate and validate new hypotheses about the relationships among aging, working conditions, genetic makeup, stress, metabolic functions, the cardiovascular system, the immune system, and mental performance over the human lifespan with a focus on healthy working adults.
Neuroticism is known to have significant health implications. While previous research revealed that interindividual differences in the amygdala function are associated with interindividual differences in neuroticism, the impact of the amygdala's structure and especially microstructure on variations in neuroticism remains unclear. Here, we present the first study using NODDI to examine the association between the in vivo microstructural architecture of the amygdala and neuroticism at the level of neurites.
View Article and Find Full Text PDFMouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease.
View Article and Find Full Text PDFEEG resting-state alpha asymmetry is one of the most widely investigated forms of functional hemispheric asymmetries in both basic and clinical neuroscience. However, studies yield inconsistent results. One crucial prerequisite to obtain reproducible results is the reliability of the index of interest.
View Article and Find Full Text PDFHandedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness.
View Article and Find Full Text PDFIntelligence is a highly polygenic trait and genome-wide association studies (GWAS) have identified thousands of DNA variants contributing with small effects. Polygenic scores (PGS) can aggregate those effects for trait prediction in independent samples. As large-scale light-phenotyping GWAS operationalized intelligence as performance in rather superficial tests, the question arises which intelligence facets are actually captured.
View Article and Find Full Text PDFPurpose: As conventional quantitative magnetic resonance imaging (MRI) parameters are weakly associated with cognitive impairment (CI) in early multiple sclerosis (MS), we explored microstructural white matter alterations in early MS or clinically isolated syndrome (CIS) comparing patients with or without CI.
Methods: Based on a preceding tract-based spatial statistics analysis (3 Tesla MRI) which contrasted 106 patients with early MS or CIS and 49 healthy controls, diffusion metrics (fractional anisotropy, FA, mean diffusivity, MD) were extracted from significant clusters using an atlas-based approach. The FA and MD were compared between patients with (Ci_P n = 14) and without (Cp_P n = 81) cognitive impairment in a subset of patients who underwent CI screening.
The visual scene-network-comprising the parahippocampal place area (PPA), retrosplenial cortex (RSC), and occipital place area (OPA)-shows a prolonged functional development. Structural development of white matter that underlies the scene-network has not been investigated despite its potential influence on scene-network function. The key factor for white matter maturation is myelination.
View Article and Find Full Text PDFBackground: Alterations in the hippocampus and prefrontal cortex (PFC) have frequently been reported in depressed patients. These parameters might prove to be a consistent finding in depression. In addition, peripheral DNA methylation of the MORC1 gene promoter showed stable associations with depression across independent samples.
View Article and Find Full Text PDFAnimal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions.
View Article and Find Full Text PDFThe corpus callosum serves the functional integration and interaction between the two hemispheres. Many studies investigate callosal microstructure via diffusion tensor imaging (DTI) fractional anisotropy (FA) in geometrically parcellated segments. However, FA is influenced by several different microstructural properties such as myelination and axon density, hindering a neurobiological interpretation.
View Article and Find Full Text PDFIntroduction: Our hands are the primary means for motor interaction with the environment, and their neural organization is fundamentally asymmetric: While most individuals can perform easy motor tasks with two hands equally well, only very few individuals can perform complex fine motor tasks with both hands at a similar level of performance. The reason why this phenomenon is so rare is not well understood. Professional drummers represent a unique population to study it, as they have remarkable abilities to perform complex motor tasks with their two limbs independently.
View Article and Find Full Text PDFTract-based spatial statistics (TBSS) is suitable for the assessment of voxel-wise changes in fiber integrity in WM tracts in the entire brain. Longitudinal TBSS analyses of early multiple sclerosis (MS) using 3 Tesla magnetic resonance imaging (MRI) are not common. To characterize microstructural WM alterations at initial diagnosis in clinically isolated syndrome (CIS) and early MS at baseline and longitudinally over 2 years.
View Article and Find Full Text PDFPsychiatry Res Neuroimaging
December 2019
Schizophrenia patients have a higher probability of altered structural and functional differences between the left and right hemisphere. Schizotypy as its nonclinical manifestation has been related to a higher incidence of non-right-handedness and atypical right-hemispheric language dominance. It has been suggested that genes involved in cilia function might link brain asymmetry and neurodevelopmental disorders.
View Article and Find Full Text PDFAlthough procrastination is a widespread phenomenon with significant influence on our personal and professional life, its genetic foundation is somewhat unknown. An important factor that influences our ability to tackle specific goals directly instead of putting them off is our ability to initiate cognitive, motivational and emotional control mechanisms, so-called metacontrol. These metacontrol mechanisms have been frequently related to dopaminergic signaling.
View Article and Find Full Text PDF