Electrocatalytic nitrate (NO) reduction reaction (eNORR) to ammonia under ambient conditions is deemed a sustainable route for wastewater treatment and a promising alternative to the Haber-Bosch process. However, there is still a lack of efficient electrocatalysts to achieve high NH production performance at wastewater-relevant low NO concentrations. Herein, we report a PdRu bimetallic nanocrystal (NC) electrocatalyst capable of exhibiting an average NH FE of ∼100% over a wide potential window from 0.
View Article and Find Full Text PDFThe energy transition to renewables necessitates innovative storage solutions beyond the capacities of lithium-ion batteries. Aluminum-ion batteries (AIBs), particularly their aqueous variants (AAIBs), have emerged as potential successors due to their abundant resources, electrochemical advantages, and eco-friendliness. However, they grapple with achieving their theoretical voltage potential, often yielding less than expected.
View Article and Find Full Text PDFElectrocatalytic nitrate (NO)/nitrite (NO) reduction reaction (eNORR) to ammonia under ambient conditions presents a green and promising alternative to the Haber-Bosch process. Practically available NO sources, such as wastewater or plasma-enabled nitrogen oxidation reaction (p-NOR), typically have low NO concentrations. Hence, electrocatalyst engineering is important for practical eNORR to obtain both high NH Faradaic efficiency (FE) and high yield rate.
View Article and Find Full Text PDF