The Fourier transform-infrared (FT-IR) spectrometer is a widely used high-resolution spectral characterization method in materials, chemicals, and more. However, the inverse relation between the spectral resolution and the interferometer's arm length yields a tradeoff between spectral resolution and spectrometer footprint. Here, we introduce a novel method to overcome this traditional FT-IR resolution limit.
View Article and Find Full Text PDFWe experimentally demonstrate an efficient broadband second-harmonic generation (SHG) process with a tunable mode-locked Ti:sapphire oscillator. We have achieved a robust broadband and efficient flat conversion of more than 35 nm wavelength by designing an adiabatic aperiodically poled potassium titanyl phosphate crystal. Moreover, we have shown that with such efficient flat conversion, we can shape and control broadband second-harmonic pulses.
View Article and Find Full Text PDF