Publications by authors named "Erfan Shahabpoor"

A rapidly growing body of experimental evidence in the literature shows that the effects of humans interacting with vibrating structures, other humans, and their surrounding environment can be critical for reliable estimation of structural vibrations. The Interaction-based Vibration Serviceability Assessment framework (I-VSA) was proposed by the authors in 2017 to address this, taking into account human-structure dynamic interactions (HSI) to simulate the structural vibrations experienced by each occupant/pedestrian. The I-VSA method, however, had limited provisions to simulate simultaneously multiple modes of structure in HSI, to simulate human-human and human-environment interactions, and the movement pattern of the occupants/pedestrians.

View Article and Find Full Text PDF

Wearable robots are emerging as a viable and effective solution for assisting and enabling people who suffer from balance and mobility disorders. Virtual prototyping is a powerful tool to design robots, preventing the costly iterative physical prototyping and testing. Design of wearable robots through modelling, however, often involves computationally expensive and error-prone multi-body simulations wrapped in an optimization framework to simulate human-robot-environment interactions.

View Article and Find Full Text PDF

Continuous monitoring of natural human gait in real-life environments is essential in many applications including disease monitoring, rehabilitation, and professional sports. Wearable inertial measurement units are successfully used to measure body kinematics in real-life environments and to estimate total walking ground reaction forces GRF(t) using equations of motion. However, for inverse dynamics and clinical gait analysis, the GRF(t) of each foot is required separately.

View Article and Find Full Text PDF

Monitoring natural human gait in real-life environment is essential in many applications including the quantification of disease progression, and monitoring the effects of treatment and alteration of performance biomarkers in professional sports. Nevertheless, reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still not available. This paper explores in detail the correlations between the acceleration of different body segments and walking ground reaction forces GRF(t) in three dimensions and proposes three sensory systems, with one, two, and three inertial measurement units (IMUs), to estimate GRF(t) in the vertical (V), medial-lateral (ML), and anterior-posterior (AP) directions.

View Article and Find Full Text PDF

Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings.

View Article and Find Full Text PDF