Membrane distillation (MD) is an emerging thermal desalination technology capable of desalinating waters of any salinity. During typical MD processes, the saline feedwater is heated and acts as the thermal energy carrier; however, temperature polarization (as well as thermal energy loss) contributes to low distillate fluxes, low single-pass water recovery and poor thermal efficiency. An alternative approach is to integrate an extra thermal energy carrier as part of the membrane and/or module assembly, which can channel externally provided heat directly to the membrane-feedwater interface and/or along the feed channel length.
View Article and Find Full Text PDFWell-wetting liquids exiting small-diameter nozzles in the dripping regime can partially rise up along the outer nozzle surfaces. This is problematic for fuel injectors and other devices such as direct-contact heat and mass exchangers that incorporate arrays of nozzles to distribute liquids. We report our experimental and numerical study of the rising phenomenon for wide ranges of parameters.
View Article and Find Full Text PDF