Publications by authors named "Erfan Oliaei"

Pharmaceuticals, designed for treating diseases, ironically endanger humans and aquatic ecosystems as pollutants. Adsorption-based wastewater treatment could address this problem, however, creating efficient adsorbents remains a challenge. Recent efforts have shifted towards sustainable bio-based adsorbents.

View Article and Find Full Text PDF

Unlabelled: Nanocellulose is very hydrophilic, preventing interactions with the oil phase in Pickering emulsions. This limitation is herein addressed by incorporating lignin nanoparticles (LNPs) as co-stabilizers of nanocellulose-based Pickering emulsions. LNP addition decreases the oil droplet size and slows creaming at pH 5 and 8 and with increasing LNP content.

View Article and Find Full Text PDF

Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated.

View Article and Find Full Text PDF

The lack of bioactivity in three-dimensional (3D)-printing of poly-є-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g.

View Article and Find Full Text PDF

Unbleached wood fibers and nanofibers are environmentally friendly bio-based candidates for material production, in particular, as reinforcements in polymer matrix biocomposites due to their low density and potential as carbon sink during the materials production phase. However, producing high reinforcement content biocomposites with degradable or chemically recyclable matrices is troublesome. Here, we address this issue with a new concept for facile and scalable in-situ polymerization of polyester matrices based on functionally balanced oligomers in pre-formed lignocellulosic networks.

View Article and Find Full Text PDF

Low-porosity materials based on hot-pressed wood fibers or nanocellulose fibrils (no polymer matrix) represent a new concept for eco-friendly materials with interesting mechanical properties. For the replacement of fossil-based materials, physical properties of wood fiber materials need to be improved. In addition, the carbon footprint and cumulative energy required to produce the material also needs to be reduced compared with fossil-based composites, e.

View Article and Find Full Text PDF

In this study, an optimized interface-modified ternary blend with antibacterial activity based on polylactic acid/starch/poly ε-caprolactone (PLASCL20), mixed with nano hydroxyapatite (nHA) via melt blending. This method results in a homogeneous nanocomposite blend in which the addition of 3% nHA improves the overall properties such as hydrolytic degradation, hydrophilicity, antibacterial activity and the drug release comparing to PLASCL20. Moreover, the simultaneous use of nHA and encapsulated triclosan (LATC30) compensated the negative effect of triclosan through increasing the possible cell attachment.

View Article and Find Full Text PDF

In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws.

View Article and Find Full Text PDF

In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction.

View Article and Find Full Text PDF