Publications by authors named "Erez Lieberman Aiden"

Article Synopsis
  • Squamate reptiles, including the Australian water dragon, are diverse tetrapods that offer insights into amniote evolution.
  • The Australian water dragon has a genome assembly of 1.8 Gb with 23,675 annotated protein-coding genes, highlighting its urban adaptability and social systems.
  • Comparative analyses indicate gene expansions related to immune function, energy balance, and wound healing, making this genome a key resource for studying lizard evolution and resilience.
View Article and Find Full Text PDF

Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal () folding and less characterized inter-chromosomal () interfaces. Current predictive models of 3D genome folding can effectively infer pairwise -chromatin interactions from the primary DNA sequence but generally ignore contacts. There is an unmet need for robust models of -genome organization that provide insights into their underlying principles and functional relevance.

View Article and Find Full Text PDF

Phlebotomine sand flies are the vectors of leishmaniasis, a neglected tropical disease. High-quality reference genomes are an important tool for understanding the biology and eco-evolutionary dynamics underpinning disease epidemiology. Previous leishmaniasis vector reference sequences were limited by sequencing technologies available at the time and inadequate for high-resolution genomic inquiry.

View Article and Find Full Text PDF
Article Synopsis
  • Pteronarcys californica, also known as the giant salmonfly, is the largest stonefly species in the western U.S., but its populations have significantly declined and are locally extinct in many rivers, especially in Utah, Colorado, and Montana.
  • Previous studies have looked at ecological conditions for its survival, but there's a gap in genetic research due to limited genomic resources.
  • This study presents a new, comprehensive genome assembly for P. californica, showcasing a large genome size of 2.40 gigabases and highlighting significant multi-species genomic variations and trends that could aid in understanding the species' genetics and conservation.
View Article and Find Full Text PDF

Enhancers are key drivers of gene regulation thought to act via 3D physical interactions with the promoters of their target genes. However, genome-wide depletions of architectural proteins such as cohesin result in only limited changes in gene expression, despite a loss of contact domains and loops. Consequently, the role of cohesin and 3D contacts in enhancer function remains debated.

View Article and Find Full Text PDF

Analyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds.

View Article and Find Full Text PDF

Chickpea (Cicer arietinum L.)-an important legume crop cultivated in arid and semiarid regions-has limited genetic diversity. Efforts are being undertaken to broaden its diversity by utilizing its wild relatives, which remain largely unexplored.

View Article and Find Full Text PDF

Phenotypic variation among species is a product of evolutionary changes to developmental programs. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species.

View Article and Find Full Text PDF

The three-dimensional organization of genomes plays a crucial role in essential biological processes. The segregation of chromatin into A and B compartments highlights regions of activity and inactivity, providing a window into the genomic activities specific to each cell type. Yet, the steep costs associated with acquiring Hi-C data, necessary for studying this compartmentalization across various cell types, pose a significant barrier in studying cell type specific genome organization.

View Article and Find Full Text PDF

Background: B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology.

View Article and Find Full Text PDF

We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year.

View Article and Find Full Text PDF
Article Synopsis
  • * The new method, called POLAR, offers a low-cost, high-throughput way to diagnose SARS-CoV-2 by amplifying the entire viral genome, unlike traditional tests that focus on just a few locations.
  • * POLAR can accurately detect low concentrations of the virus and generate detailed genomic data to track disease spread and identify potential treatments, all while processing 192 samples in 8 hours at a low cost per patient.
View Article and Find Full Text PDF
Article Synopsis
  • - This study identifies over 13 million interactions between transcriptional enhancers and their target genes across various cell types and tissues, which is crucial for understanding how gene regulation influences diseases.
  • - Utilizing a new predictive model called ENCODE-rE2G, the researchers achieved high accuracy in predicting enhancer-gene interactions, supported by a robust dataset from CRISPR experiments and genetic mapping.
  • - The findings highlight not only the role of enhancers and their contacts with promoters but also additional factors like promoter types and enhancer interactions that affect gene regulation, creating a detailed resource for future genetic research.
View Article and Find Full Text PDF

During mouse embryogenesis, expression of the long non-coding RNA (lncRNA) Airn leads to gene repression and recruitment of Polycomb repressive complexes (PRCs) to varying extents over a 15-Mb domain. The mechanisms remain unclear. Using high-resolution approaches, we show in mouse trophoblast stem cells that Airn expression induces long-range changes to chromatin architecture that coincide with PRC-directed modifications and center around CpG island promoters that contact the Airn locus even in the absence of Airn expression.

View Article and Find Full Text PDF

Background: B-type lamins are critical nuclear envelope proteins that interact with the 3D genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron (AID) technology.

View Article and Find Full Text PDF

Nuclear compartments are prominent features of 3D chromatin organization, but sequencing depth limitations have impeded investigation at ultra fine-scale. CTCF loops are generally studied at a finer scale, but the impact of looping on proximal interactions remains enigmatic. Here, we critically examine nuclear compartments and CTCF loop-proximal interactions using a combination of in situ Hi-C at unparalleled depth, algorithm development, and biophysical modeling.

View Article and Find Full Text PDF

The black-footed ferret (Mustela nigripes) narrowly avoided extinction to become an oft-cited example of the benefits of intensive management, research, and collaboration to save a species through ex situ conservation breeding and reintroduction into its former range. However, the species remains at risk due to possible inbreeding, disease susceptibility, and multiple fertility challenges. Here, we report the de novo genome assembly of a male black-footed ferret generated through a combination of linked-read sequencing, optical mapping, and Hi-C proximity ligation.

View Article and Find Full Text PDF

We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males.

View Article and Find Full Text PDF

Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed.

View Article and Find Full Text PDF

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns.

View Article and Find Full Text PDF

We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date.

View Article and Find Full Text PDF

Background: Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T.

View Article and Find Full Text PDF

Background: One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed.

View Article and Find Full Text PDF