Unlabelled: Phosphatidylcholine transfer protein (PC-TP, synonym StARD2) is a highly specific intracellular lipid binding protein that is enriched in liver. Coding region polymorphisms in both humans and mice appear to confer protection against measures of insulin resistance. The current study was designed to test the hypotheses that Pctp-/- mice are protected against diet-induced increases in hepatic glucose production and that small molecule inhibition of PC-TP recapitulates this phenotype.
View Article and Find Full Text PDFDietary carbohydrates regulate hepatic lipogenesis by controlling the expression of critical enzymes in glycolytic and lipogenic pathways. We found that the transcription factor XBP1, a key regulator of the unfolded protein response, is required for the unrelated function of normal fatty acid synthesis in the liver. XBP1 protein expression in mice was elevated after feeding carbohydrates and corresponded with the induction of critical genes involved in fatty acid synthesis.
View Article and Find Full Text PDFPhosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling.
View Article and Find Full Text PDFInsulin resistance plays a central role in the development of the metabolic syndrome, but how it relates to cardiovascular disease remains controversial. Liver insulin receptor knockout (LIRKO) mice have pure hepatic insulin resistance. On a standard chow diet, LIRKO mice have a proatherogenic lipoprotein profile with reduced high-density lipoprotein (HDL) cholesterol and very low-density lipoprotein (VLDL) particles that are markedly enriched in cholesterol.
View Article and Find Full Text PDFThe Star (steroidogenic acute regulatory protein)-related transfer (START) domain superfamily is characterized by a distinctive lipid-binding motif. START domains typically reside in multidomain proteins, suggesting their function as lipid sensors that trigger biological activities. Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is an example of a START domain minimal protein that consists only of the lipid-binding motif.
View Article and Find Full Text PDFPhosphatidylcholine transfer protein (PC-TP) is a highly specific soluble lipid binding protein that transfers phosphatidylcholine between membranes in vitro. PC-TP is a member of the steroidogenic acute regulatory protein-related transfer (START) domain superfamily. Although its biochemical properties and structure are well characterized, the functions of PC-TP in vivo remain incompletely understood.
View Article and Find Full Text PDF