Small membranous extracellular vesicles (EV) incorporate proteins and nucleic acids from the parent cell. Proteins exposed on EV surface are dictated by cellular origin and biogenesis pathway. To better understand the EV origin and function, it is important to develop methods that reveal surface protein composition of heterogeneous EV populations in culture supernatants and in biofluids.
View Article and Find Full Text PDFIsolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood.
View Article and Find Full Text PDFBackground: Cognitive decline in Alzheimer's disease (AD) is associated with hyperphosphorylated tau (pTau) propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EVs). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2 (nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that human tau expression elevates brain ceramides and nSMase2 activity.
View Article and Find Full Text PDFAims: Blood biomarkers can improve drug development for Alzheimer's disease (AD) and its treatment. Neuron-derived extracellular vesicles (NDEVs) in plasma offer a minimally invasive platform for developing novel biomarkers that may be used to monitor the diverse pathogenic processes involved in AD. However, NDEVs comprise only a minor fraction of circulating extracellular vesicles (EVs).
View Article and Find Full Text PDFBackground: Cognitive decline in Alzheimer's disease (AD) is associated with prion-like tau propagation between neurons along synaptically connected networks, in part via extracellular vesicles (EV). EV biogenesis is triggered by ceramide enrichment at the plasma membrane from neutral sphingomyelinase2(nSMase2)-mediated cleavage of sphingomyelin. We report, for the first time, that tau expression triggers an elevation in brain ceramides and nSMase2 activity.
View Article and Find Full Text PDFBesides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls.
View Article and Find Full Text PDFThe hallmarks of Alzheimer's disease (AD) pathology are senile plaques containing amyloid-beta (Aβ) and neurofibrillary tangles containing hyperphosphorylated tau. Additional pathologies often co-exist, whereas multiple pathogenic mechanisms are involved in AD, especially synaptic degeneration, which necessitate the need for synaptic integrity-related biomarkers alongside Aβ- and tau-related biomarkers. Plasma neuron-derived Extracellular Vesicles EVs (NDEVs) provide biomarkers related to Aβ and tau and synaptic degeneration.
View Article and Find Full Text PDFMitochondria provide energy to neurons through oxidative phosphorylation and eliminate Reactive Oxygen Species (ROS) through Superoxide Dismutase 1 (SOD1). Dysfunctional mitochondria, manifesting decreased activity of electron transport chain (ETC) complexes and high ROS levels, are involved in Alzheimer's disease (AD) pathogenesis. We hypothesized that neuronal mitochondrial dysfunction in AD is reflected in ETC and SOD1 levels and activity in plasma neuron-derived extracellular vesicles (NDEVs).
View Article and Find Full Text PDFFront Cell Dev Biol
November 2020
Alzheimer's disease (AD) is the most common type of dementia. Amyloid β (Aβ) plaques, tau-containing neurofibrillary tangles, and neuronal loss leading to brain atrophy are pathologic hallmarks of AD. Given the importance of early diagnosis, extensive efforts have been undertaken to identify diagnostic and prognostic biomarkers for AD.
View Article and Find Full Text PDFWe have previously shown that blood astrocytic-origin extracellular vesicles (AEVs) from Alzheimer's disease (AD) patients contain high complement levels. To test the hypothesis that circulating EVs from AD patients can induce complement-mediated neurotoxicity involving Membrane Attack Complex (MAC) formation, we assessed the effects of immunocaptured AEVs (using anti-GLAST antibody), in comparison with neuronal-origin (N)EVs (using anti-L1CAM antibody), and nonspecific CD81+ EVs (using anti-CD81 antibody), from the plasma of AD, frontotemporal lobar degeneration (FTLD), and control participants. AEVs (and, less effectively, NEVs) of AD participants induced Membrane Attack Complex (MAC) expression on recipient neurons (by immunohistochemistry), membrane disruption (by EthD-1 assay), reduced neurite density (by Tuj-1 immunohistochemistry), and decreased cell viability (by MTT assay) in rat cortical neurons and human iPSC-derived neurons.
View Article and Find Full Text PDFIntroduction: Neuronal extracellular vesicle (nEV) tau and insulin signaling biomarkers may detect preclinical Alzheimer's disease and age-associated cognitive decline.
Methods: This case-control study used repeated serum samples from 73 cognitively declining and 73 stable Wisconsin Registry for Alzheimer's Prevention participants (62.4 ± 6.
Background: TREM2 is a transmembrane receptor that is predominantly expressed by microglia in the central nervous system. Rare variants in the TREM2 gene increase the risk for late-onset Alzheimer's disease (AD). Soluble TREM2 (sTREM2) resulting from shedding of the TREM2 ectodomain can be detected in the cerebrospinal fluid (CSF) and is a surrogate measure of TREM2-mediated microglia function.
View Article and Find Full Text PDFProgranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset.
View Article and Find Full Text PDFSulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6.
View Article and Find Full Text PDFNeurotransmitters and peptide hormones are secreted into outside the cell by a vesicle fusion process. Although non-coding RNA (ncRNA) that include microRNA (miRNA) regulates gene expression inside the cell where they are transcribed, extracellular miRNA has been recently discovered outside the cells, proposing that miRNA might be released to participate in cell-to-cell communication. Despite its importance of extracellular miRNA, the molecular mechanisms by which miRNA can be stored in vesicles and released by vesicle fusion remain enigmatic.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) biomarkers may support the diagnosis of Alzheimer's disease (AD). We studied if the diagnostic power of AD CSF biomarker concentrations, i.e.
View Article and Find Full Text PDFDecreased levels of alpha-synuclein (aSyn) in cerebrospinal fluid (CSF) in Parkinson's disease and related synucleinopathies have been reported, however, not consistently in all cross-sectional studies. To test the performance of one recently released human-specific enzyme-linked immunosorbent assay (ELISA) for the quantification of aSyn in CSF, we carried out a round robin trial with 18 participating laboratories trained in CSF ELISA analyses within the BIOMARKAPD project in the EU Joint Program - Neurodegenerative Disease Research. CSF samples (homogeneous aliquots from pools) and ELISA kits (one lot) were provided centrally and data reported back to one laboratory for data analysis.
View Article and Find Full Text PDF