Nanospheres and nanocapsules of an amphiphilic beta-cyclodextrin, beta-CDC6, were evaluated using a group of steroid drugs to determine the effect of drug physicochemical properties (e.g. partition coefficient, drug:CD association constant k1:1, aqueous solubility) on loading and release profiles of the nanoparticles.
View Article and Find Full Text PDFNanoparticles were prepared using beta-CDC6, which is an amphiphilic beta-cyclodextrin derivative modified on the secondary face with 6C aliphatic esters. A nanoprecipitation technique was used to prepare the blank nanoparticles without any surfactant and nanoparticles containing Pluronic F68 as surfactant in a concentration range of 0.1 to 1%.
View Article and Find Full Text PDFSterility is required as stated by compendial requirements and registration authorities worldwide for an injectable drug carrier system. In this study, injectable nanospheres and nanocapsules prepared from amphiphilic beta-cyclodextrin, beta-CDC6, were assessed for their in vitro properties such as particle size distribution, zeta potential, nanoparticle yield (%), drug entrapment efficiency and in vitro drug release profiles. Different sterilization techniques such as gamma irradiation and autoclaving were evaluated for their feasibility regarding the maintenance of the above mentioned nanoparticle properties after sterilization.
View Article and Find Full Text PDFNanospheres and nanocapsules of beta-CDC6, amphiphilic beta-cyclodextrin modified on the secondary face with 6C aliphatic esters, were prepared with nanoprecipitation technique directly from inclusion complexes of tamoxifen citrate and beta-CDC6 (1:1 molar ratio). Blank and loaded nanospheres and nanocapsules were characterized by particle size distribution, zeta potential, drug loading and in vitro drug release. Particle sizes were between 250 and 300 nm for different formulations of nanospheres and nanocapsules.
View Article and Find Full Text PDF