Acoustic waves provide a biocompatible and deep-tissue-penetrating tool suitable for contactless manipulation in in vivo environments. Despite the prevalence of dynamic fluids within the body, previous studies have primarily focused on static fluids, and manipulatable agents in dynamic fluids are limited to gaseous core-shell particles. However, these gas-filled particles face challenges in fast-flow manipulation, complex setups, design versatility, and practical medical imaging, underscoring the need for effective alternatives.
View Article and Find Full Text PDFElectrical stimulation is a fundamental tool in studying neural circuits, treating neurological diseases, and advancing regenerative medicine. Injectable, free-standing piezoelectric particle systems have emerged as non-genetic and wireless alternatives for electrode-based tethered stimulation systems. However, achieving cell-specific and high-frequency piezoelectric neural stimulation remains challenging due to high-intensity thresholds, non-specific diffusion, and internalization of particles.
View Article and Find Full Text PDFMedical microrobotics is an emerging field to revolutionize clinical applications in diagnostics and therapeutics of various diseases. On the other hand, the mobile microrobotics field has important obstacles to pass before clinical translation. This article focuses on these challenges and provides a roadmap of medical microrobots to enable their clinical use.
View Article and Find Full Text PDFMicroparticle manipulation and trapping play pivotal roles in biotechnology. To achieve effective manipulation within fluidic flow conditions and confined spaces, it is necessary to consider the physical properties of microparticles and the types of trapping forces applied. While acoustic waves have shown potential for manipulating microparticles, the existing setups involve complex actuation mechanisms and unstable microbubbles.
View Article and Find Full Text PDFStimuli-responsive geometric transformations endow metamaterials with dynamic properties and functionalities. However, using existing transformation mechanisms to program a single geometry to transform into diverse final configurations remains challenging, imposing crucial design restrictions on achieving versatile functionalities. Here, we present a programmable strategy for wide-spectrum reconfigurable micro-metastructures using linearly responsive transparent hydrogels as artificial muscles.
View Article and Find Full Text PDFControlled microrobotic navigation inside the body possesses significant potential for various biomedical engineering applications. Successful application requires considering imaging, control, and biocompatibility. Interaction with biological environments is also a crucial factor in ensuring safe application, but can also pose counterintuitive hydrodynamic barriers, limiting the use of microrobots.
View Article and Find Full Text PDFWhile micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots.
View Article and Find Full Text PDFTurk J Ophthalmol
February 2023
Objectives: To investigate choriocapillaris flow voids (FV) with a new optical coherence tomography angiography (OCTA) image processing strategy that can eliminate artifacts caused by vitreous opacities, sub-retinal pigment epithelium fluid and deposits, and subretinal fluid (SRF) by thresholding the en-face OCT image of the outer retina.
Materials And Methods: We retrospectively reviewed medical records of patients with drusen and patients with active central serous chorioretinopathy (CSC). FV number (FVn), average area (FVav), and maximum area (FVmax) and the percentage of nonperfused choriocapillaris area (PNPCA) obtained using the proposed strategy were compared with those obtained by removing only artifacts caused by the superficial capillary plexus (SCP).
Objectives: The purpose of the study was to determine interobserver and intraobserver agreement, repeatability, and intrasubject variation of the detection of Demodex infestation in eyelids of blepharitis patients using in vivo confocal microscopy (IVCM).
Methods: Eighty-three eyes of 42 blepharitis patients were included in the study. All eyelids were evaluated from temporal to nasal with IVCM using section mode and 10 lashes with their follicles were imagined, and every image with suspicion of Demodex infestation was recorded.
Proc Natl Acad Sci U S A
August 2022
Untethered soft miniature robots capable of accessing hard-to-reach regions can enable new, disruptive, and minimally invasive medical procedures. However, once the control input is removed, these robots easily move from their target location because of the dynamic motion of body tissues or fluids, thereby restricting their use in many long-term medical applications. To overcome this, we propose a wireless spring-preloaded barbed needle release mechanism, which can provide up to 1.
View Article and Find Full Text PDFMicrocatheters have enabled diverse minimally invasive endovascular operations and notable health benefits compared with open surgeries. However, with tortuous routes far from the arterial puncture site, the distal vascular regions remain challenging for safe catheter access. Therefore, we propose a wireless stent-shaped magnetic soft robot to be deployed, actively navigated, used for medical functions, and retrieved in the example M4 segment of the middle cerebral artery.
View Article and Find Full Text PDFCorneal collagen crosslinking (CXL) is a commonly used minimally invasive surgical technique to prevent the progression of corneal ectasias, such as keratoconus. Unfortunately, riboflavin/UV-A light-based CXL procedures have not been successfully applied to all patients, and result in frequent complications, such as corneal haze and endothelial damage. We propose a new method for corneal crosslinking by using a Ruthenium (Ru) based water-soluble photoinitiator and visible light (430 nm).
View Article and Find Full Text PDFPurpose: To perform a macular volumetric and topographic analysis of Henle fiber layer (HFL) from retinal scans acquired by directional optical coherence tomography.
Methods: Thirty healthy eyes of 17 subjects were imaged using the Heidelberg spectral-domain optical coherence tomography (Spectralis, Heidelberg Engineering, Heidelberg, Germany) with varied horizontal and vertical pupil entry. Manual segmentation of HFL was performed from retinal sections of horizontally and vertically tilted optical coherence tomography images acquired within macular 20 × 20° area.
Purpose: The pathological mechanisms of keratoconus (KC) have not been elucidated yet. Mitophagy is an important mechanism that eliminates damaged mitochondria under oxidative stress, and it could be one of the leading pathological causes of KC. This study aimed to find out the role of mitophagy in the keratoconic corneal epithelium.
View Article and Find Full Text PDFOptoelectronic biointerfaces have made a significant impact on modern science and technology from understanding the mechanisms of the neurotransmission to the recovery of the vision for blinds. They are based on the cell interfaces made of organic or inorganic materials such as silicon, graphene, oxides, quantum dots, and π-conjugated polymers, which are dry and stiff unlike a cell/tissue environment. On the other side, wet and soft hydrogels have recently been started to attract significant attention for bioelectronics because of its high-level tissue-matching biomechanics and biocompatibility.
View Article and Find Full Text PDFLight-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored.
View Article and Find Full Text PDFIn this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis.
View Article and Find Full Text PDFHypertension (HT) is one of the main causes of vascular dementia, lead to cognitive decline. Here, we investigated the relationship between cerebral microvessels, pericytes, extracellular matrix (ECM) accumulation, blood-brain barrier (BBB) breakdown, and memory impairment at mid-life in a chronic hypertension animal model. Spontaneously hypertensive rats (SHRs) (n = 20) are chosen for the model and age matched Wistar rats (n = 16) as controls.
View Article and Find Full Text PDFPurpose: In vivo confocal microscopy (IVCM) is a noninvasive, reproducible, and inexpensive diagnostic tool for corneal diseases. However, widespread and effortless image acquisition in IVCM creates serious image analysis workloads on ophthalmologists, and neural networks could solve this problem quickly. We have produced a novel deep learning algorithm based on generative adversarial networks (GANs), and we compare its accuracy for automatic segmentation of subbasal nerves in IVCM images with a fully convolutional neural network (U-Net) based method.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
June 2021
Objectives: To investigate cytokine profile of cholesteatoma and to collect information about important intercellular signaling pathways by establishing two different cell culture models, to block important intercellular signaling pathways in cholesteatoma by applying immune system modifier drugs to develop alternative medical therapy options for cholesteatoma.
Methods: To observe the pathogenesis of cholesteatoma and to apply the immunomodulatory drugs, cholesteatoma tissue culture models were constituted with HEKa cells and cholesteatoma keratinocytes, which were obtained from 3 patients who underwent operations for cholesteatoma. Medicines including 5-fluorourasil, imiquimod, cyclosporine, and tacrolimus were applied on both cholesteatoma keratinocytes and HEKa cells.
Optoelectronic photoelectrodes based on capacitive charge-transfer offer an attractive route to develop safe and effective neuromodulators. Here, we demonstrate efficient optoelectronic photoelectrodes that are based on the incorporation of quantum dots (QDs) into poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-Phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction. We control the performance of the photoelectrode by the blend ratio, thickness, and nanomorphology of the ternary bulk heterojunction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Neural interfaces are the fundamental tools to understand the brain and cure many nervous-system diseases. For proper interfacing, seamless integration, efficient and safe digital-to-biological signal transduction, and long operational lifetime are required. Here, we devised a wireless optoelectronic pseudocapacitor converting the optical energy to safe capacitive currents by dissociating the photogenerated excitons in the photovoltaic unit and effectively routing the holes to the supercapacitor electrode and the pseudocapacitive electrode-electrolyte interfacial layer of PEDOT:PSS for reversible faradic reactions.
View Article and Find Full Text PDFPurpose: To investigative the effects of sex steroids on hyperosmolar stress-induced proinflammatory cytokine expression of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-8, and IL-6, and on the mitogen-activated protein kinase pathway in immortalized human corneal epithelial cells (hCECs).
Methods: Immortalized hCECs were cultured with keratinocyte-free medium until reaching 80% confluency with either 10 M dihidrotestosteron (DHT) or 10 M 17-β-estradiol, and then, the medium was changed to hyperosmolar for various time points. After hyperosmolar treatment, a real-time polymerase chain reaction was performed to show the TNF-α, IL-8, and IL-6 gene expression levels in hCECs.
: The purpose of this study is to explore the effects of dihydrotestosterone (DHT) on lipopolysaccharide (LPS)-induced proinflammatory cytokine release in human ocular surface epithelial cells exposed to LPS and LPS-binding protein (LBP).: Immortalized human corneal, conjunctival, and meibomian gland epithelial cells were cultured in keratinocyte-free medium. After confluency, they were exposed to a stratification medium Dulbecco's modified Eagle medium (DMEM)/F12 in the presence of fetal bovine serum and were exposed to vehicle, LPS + LBP, or DHT.
View Article and Find Full Text PDF: Type 2 Diabetes mellitus (DM) is a major health problem and its ocular complications like orbital infections, cataract and diabetic retinopathy cause blindness. Meibomian gland (MG) dysfunction and dry eye disease are also important ocular complications of type 2 DM but not enough research has been conducted on these complications. Our hypothesis suggests type 2 DM can alter significant gene expressions of MG.
View Article and Find Full Text PDF