Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target.
View Article and Find Full Text PDFIn order to find new and highly effective anti-tumor drugs with targeted therapeutic effects, a series of novel 4-aminoquinazoline derivatives containing N-phenylacetamide structure were designed, synthesized and evaluated for antitumor activity against four human cancer cell lines (H1975, PC-3, MDA-MB-231 and MGC-803) using MTT assay. The results showed that the compound 19e had the most potent antiproliferative activity against H1975, PC-3, MDA-MB-231 and MGC-803 cell lines. At the same time, compound 19e could significantly inhibit the colony formation and migration of H1975 cells.
View Article and Find Full Text PDFA series of novel 2,4-disubstituted quinazolines were synthesized and evaluated for their anti-tumor activity against five human cancer cells (MDA-MB-231, MCF-7, PC-3, HGC-27 and MGC-803) using MTT assay. Among them, compound 9n showed the most potent cytotoxicity against breast cancer cells. Compound 9n also significantly inhibited the colony formation and migration of MDA-MB-231 and MCF-7 cells.
View Article and Find Full Text PDFNanocomposites for integrating imaging and therapy have attracted tremendous attention for biomedical applications. Herein, Fe@Bi2S3 nanocomposites modified with polyethylene glycol (PEG) molecules are fabricated for synergistic thermoradiotherapy. For such nanocomposites, Bi2S3 exhibits a strong absorbance in the near-infrared (NIR) region, which allows Bi2S3 to convert energy from light into heat for effective photothermal therapy (PTT), whereas Bi can also significantly enhance radio-mediated cell death induction as a radiotherapy sensitizer due to its high atomic number (high-Z).
View Article and Find Full Text PDFIn this study, we report novel multifunctional nanoagents for in vivo enzyme-responsive anticancer drug delivery and magnetic resonance imaging (MRI), based on mesoporous silica coated iron oxide nanoparticles (FeO@MSNs). The anticancer drug, DOX, was encapsulated in the porous cavities with a MMP-2 enzyme responsive peptide being covalently linked to the nanoparticles surface. The in vitro experiment results indicated that the enzyme responsive nanoagents own high specificity for controlled drug release in the cell line with high MMP-2 expression.
View Article and Find Full Text PDFThe hybrid platinum@iron oxide core-shell nanorods with high biocompatibility were synthesized and applied for combined therapy. These hybrid nanorods exhibit a good photothermal effect on cancer cells upon irradiation with a NIR laser. Furthermore, due to the presence of a high atomic number element (platinum core), the hybrid nanorods show a synergistic effect between photothermal and radiation therapy.
View Article and Find Full Text PDF