Publications by authors named "Erdogan Hakki"

Nanotechnology, which involves manipulating matter at the atomic and molecular scales to produce structures and devices ranging from 1 to 100 nm, is increasingly being applied in agriculture. Nanoscale materials possess distinct optical, electrochemical, and mechanical properties that enable the smart, targeted delivery of pesticides, fertilizers, and genetic materials to plants, as well as rapid sensing and on-site monitoring of plant health, soil fertility, and water quality in a digital format. This review explores the application of nanotechnology in agriculture, examining the challenges and benefits related to all aspects of crop production, with a particular focus on regulatory issues.

View Article and Find Full Text PDF

Background/objectives: In this in vitro study, the effects of Stromal cell-derived factor-1 (SDF-1) was evaluated on the periodontal ligament-Mesenchymal Stem Cells (pdl-MSCs) functions.

Material And Methods: Real-time cell analyzer-single plate (RTCA-SP) was employed for proliferation, and RTCA-dual purpose (DP) was utilized for pdl-MSCs migration potential treated with different SDF-1 concentrations (0, 0.1, 1, 10, 100, 200, and 400 ng/ml).

View Article and Find Full Text PDF

The effects of boron on the formation and maintenance of mineralized structures at the molecular level are still not clearly defined. Thus, a study was conducted using MC3T3-E1 cells to determine whether boron affected mRNA expressions of genes associated with bone/alveolar bone formation around the teethMC3T3-E1 (clone 4) cells were cultured in media treated with boric acid at concentrations of 0, 0.1, 10, 100, or 1000 ng/ml.

View Article and Find Full Text PDF

The continuously changing environment has intensified the occurrence of abiotic stress conditions. Individually, boron (B) toxicity and salinity stress are well recognized as severe stress conditions for plants. However, their coexistence in arid and semi-arid agricultural regions has shown ambiguous effects on plant growth and development.

View Article and Find Full Text PDF

Genetic polymorphism amid plant species is a crucial factor for plant improvement and maintaining their biodiversity. Evaluation of genetic diversity amongst plant species is significant to deal with the environmental stress conditions and their effective involvement in the breeding programs. Hence, in present study, an attempt has been made towards the genetic assessment of individual and bulked populations of 25 watermelon genotypes, belonging to Citroides (citron watermelon) and Lanatus (dessert watermelon) group from Konya, Thrace, Turkmenistan, Saudi Arabia and Turkey.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed environmental toxicants primarily formed during the incomplete combustion of organic materials (for example, coal, oil, gasoline and wood). Power energy plants are the main sources of organic contaminants including PAHs. The purpose of the present research was to study the Novocherkassk Electric Power Station (NEPS) emission effects of PAHs accumulation in soils.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to compare the proliferation and differentiation potential of mesenchymal stem cells (MSCs) derived from palatal adipose tissue (PAT) and lipoaspirated adipose tissue (LAT).

Materials And Methods: PATs were obtained from 2 healthy female patients undergoing surgery for gingival recession, and LATs were obtained from 2 healthy female patients undergoing plastic surgery. LAT- and PAT-derived MSCs were confirmed by flow cytometry using MSC-specific surface markers.

View Article and Find Full Text PDF

The aim of this study was to evaluate the effects of diode laser biostimulation on cementoblasts (OCCM.30). A total of 40 root plates were obtained from healthy third molar teeth and assigned to the following two groups: (1) control group and (2) laser-treated group.

View Article and Find Full Text PDF

Background: A total of 150 bread wheat genotypes representing 121 Indian and 29 Turkish origin were screened for nutrient concentrations and grain protein content. Elemental and grain protein composition were studied by Inductively Coupled Plasma-Atomic Emission Spectrophotometer and LECO analyser, respectively. The study was performed to determine the variability in nutrient concentrations present in the collected wheat genetic material from two countries.

View Article and Find Full Text PDF

Human gingival fibroblasts (HGFs) are the major constituents of the gingival tissues responsible for the synthesis and degradation of the connective tissue while actively participating in immune reactions and inflammation. The aim of this study was to test the impact of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) on human gingival fibroblasts.

View Article and Find Full Text PDF

Recent studies indicate an extremely high level of tolerance to boron (B) toxicity in Puccinellia distans (Jacq.) Parl. but the mechanistic basis is not known.

View Article and Find Full Text PDF

Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961-65 excavations due to the recovery of primitive hexaploid wheat.

View Article and Find Full Text PDF

Genetic diversity among plant species offers prospects for improving the plant characteristics. Its assessment is necessary to help tackle the threats of environmental fluctuations and for the effective exploitation of genetic resources in breeding programmes. Although wheat is one of the most thoroughly studied crops in terms of genetic polymorphism studies, phylogenetic affinities of Indian and Turkish Triticum species have not been assessed to date.

View Article and Find Full Text PDF

The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.

View Article and Find Full Text PDF

Background: Cell-based therapy using mesenchymal stem cells (MSCs) seems promising to obtain regeneration of dental tissues. A comparison of tissue sources, including periodontal ligament (PDL) versus pulp (P), could provide critical information to select an appropriate MSC population for designing predictable regenerative therapies. The purpose of this study is to compare the proliferation and stemness and the MSC-specific and mineralized tissue-specific gene expression of P-MSCs and PDL-MSCs.

View Article and Find Full Text PDF

The utility of adult stem cells for bone regeneration may be an attractive alternative in the treatment of extensive injury, congenital malformations, or diseases causing large bone defects. To create an environment that is supportive of bone formation, signals from molecules such as the bone morphogenetic proteins (BMPs) are required to engineer fully viable and functional bone. We therefore determined whether BMP-2, -6, and -7 differentially regulate the (1) proliferation, (2) mineralization, and (3) mRNA expression of bone/mineralized tissue associated genes of human periodontal ligament stem cells (hPDLSCs), which were obtained from periodontal ligament tissue of human impacted third molars.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how periodontal ligament (PDL) cells behave in response to different types of titanium surfaces, focusing on cell growth, shape, and mineralization of tissue.
  • PDL cells were grown on smooth and various sandblasted titanium surfaces, with key experiments measuring cell proliferation and specific protein expressions using advanced microscopy and gene analysis methods.
  • Results showed that while most surfaces had similar cell growth, the sodium titanate (NaTi) surface significantly influenced mineralization and increased expression of certain genes related to bone formation, suggesting it could be a better option for implants compared to other surfaces.
View Article and Find Full Text PDF

An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.

View Article and Find Full Text PDF

mRNA expressions related to osteogenic differentiation of MC3T3-E1 cells on electro-polished smooth (S), sandblasted small-grit (SSG) and sandblasted large-grit (SLG) surfaces of titanium alloys were investigated in vitro. Gene expression profiles of cells were evaluated using the RT2 Profiler PCR microarray on day 7. Mineralizing tissue-associated proteins, differentiation factors and extracellular matrix enzymes mRNA expressions were measured using Q-PCR.

View Article and Find Full Text PDF

The aim of this study was to determine the effects of boron (B) on the cell-survival, proliferation, mineralization and mRNA expression of mineralized tissue-associated proteins. Additionally, determination of the effects of B on the BMP-4, -6 and -7 protein levels of pre-osteoblastic cells (MC3T3-E1) was also intended. The effects of B (pH 7.

View Article and Find Full Text PDF

Background: Bone morphogenetic protein (BMP)-7 is a potent bone-inducing factor and was shown to promote periodontal regeneration in vivo and in vitro; however, to our knowledge, the specific effect of BMP-7 on cementoblasts has not been defined. We aimed to investigate the effects of BMP-7 on cementoblasts, which are cells responsible for tooth root-cementum formation. We hypothesized that BMP-7 would regulate mineralized tissue-associated genes in cementoblasts and influence the expression profile of genes associated with cementoblast extracellular matrix (ECM) and cell adhesion molecules (CAMs).

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of mineral trioxide aggregate (MTA) on survival, mineralization, and expression of mineralization-related genes of cementoblasts. Immortalized cementoblasts (OCCM) were maintained with Dulbecco modified Eagle medium containing 10% fetal bovine serum. Methyl-thiazol-diphenyl-tetrazolium experiments were performed at 24 and 72 hours to evaluate bioactive components released by MTA (0.

View Article and Find Full Text PDF

The synthesis, characterization and pharmacological activities of a new series of (6-difluorobenzoyl)-5-methyl-3-benzoylmethyl-2(3H)-benzoxazolone and 5-methyl-3-(2-hydroxyl-2-phenylethyl)-2(3H)-benzoxazolone are described. Antiinflammatory activity was investigated by the carrageenin-induced paw oedema test and analgesic activity by acetic acid writhing and hot plate tests in mice. Among the synthesized compounds, compound 3e 6-(2,5-difluorobenzoyl)-3-(4-bromobenzoylmethyl-2(3H)-benzoxazolone was found to be the most promising compound for analgesic activity.

View Article and Find Full Text PDF

Aim: Matrix metalloproteinase-1 (MMP-1) is a proteolytic enzyme that degrades extracellular matrix and plays a fundamental role during destruction of periodontal tissues. The aim of this study was to examine the association between MMP-1 -1607 1G/2G polymorphism and chronic periodontitis susceptibility in a Turkish population.

Material And Methods: A total of 180 subjects were enrolled in this study.

View Article and Find Full Text PDF