Long-chain perfluoroalkyl substances (FPAS) are commonly detected in environmental and biological contexts. This study investigated the interactions of perfluoroundecanoic acid (PFUnDA) and perfluorotridecanoic acid (PFTrDA) with human serum albumin (HSA). Fluorescence quenching experiments demonstrated static quenching of HSA's intrinsic fluorescence by both PFUnDA and PFTrDA, resulting in the formation of stable HSA-PFAS complexes.
View Article and Find Full Text PDFDichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and bromate (BrO) are disinfection byproducts (DBPs) formed during drinking water treatment and pose health risks. Rapid and reliable detection of these DBPs is essential for ensuring water safety. Non-suppressed ion chromatography (IC)-electrospray ionization mass spectrometry (IC-ESI-MS/MS) offers a promising approach for simultaneous analysis of organic haloacetic acids (HAAs) and inorganic oxyhalides, but previous methods using toxic methylamine can pose health risks.
View Article and Find Full Text PDFEnviron Sci Technol
November 2024
Pterins, including biopterin prevalent during cyanobacterial blooms, are nitrogen-containing heterocyclic compounds ubiquitous in both natural and engineered environments. However, their roles and associated human risks in water treatment remain poorly understood. This study systematically investigated the kinetics, disinfection byproducts (DBPs), and toxicity of biopterin in chlorination.
View Article and Find Full Text PDFEnviron Sci Technol
September 2024
Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity.
View Article and Find Full Text PDFHumic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied.
View Article and Find Full Text PDFPer- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach.
View Article and Find Full Text PDFThe environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA.
View Article and Find Full Text PDFThe requirement of simple, efficient and accurate detection of tetracycline (TC) in water environments poses new challenges for sensing platform development. Here, we report a simple method for TC sensing via fluorescence detection based on metal-organic coordination polymers (MOCPs, (4-Hap)(MoO)) coated with nitrogen-doped carbon dots (NCDs). These NCDs@(4-Hap)(MoO) composites showed excellent luminescence features of NCDs with stable bright-blue emission under UV light.
View Article and Find Full Text PDFSimultaneously eliminating novel contaminants in the water environment while also achieving high-value utilization of CO poses a significant challenge in water purification. Herein, a CO-reduced carbon catalyst (CRC) was synthesized via the chemical vapor deposition method for permanganate (PM) activation, fulfilling the ultra-efficient removal of bisphenol A (BPA). The primary mechanism responsible for the BPA degradation in the CRC/PM process is electron transfer.
View Article and Find Full Text PDFMethylisothiazolinone (MIT) is widely used in daily chemicals, fungicides, and other fields and its toxicity has posed a threat to water system and human health. In this study, ultraviolet (UV)/trichloroisocyanuric acid (TCCA), which belongs to advanced oxidation processes (AOP), was adopted to degrade MIT. Total chlorine attenuation detection proved that TCCA has medium UV absorption and a strong quantum yield (0.
View Article and Find Full Text PDFDue to the high operational cost and secondary pollution of the conventional advanced nitrogen removal of municipal wastewater, a novel concept and technique of advanced synergetic nitrogen removal of partial-denitrification anammox and denitrification was proposed, which used the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by biogenic manganese oxides (BMOs) as carbon source. When the influent NH-N in the denitrifying filter was about 1.0, 2.
View Article and Find Full Text PDFUltraviolet (UV)/chlor(am)ine processes are emerging advanced oxidation processes (AOPs) for water decontamination and raising continuous attention. However, limitations appear in the UV/hypochlorite and UV/monochloramine for removing specific contaminants ascribed to the differences in the sorts and yields of free radicals. Here, this study reports UV/dichloroisocyanurate (NaDCC) as a novel source of radicals.
View Article and Find Full Text PDFAdvanced nitrogen removal faces the challenges of high operational cost resulted from the additional carbon source and secondary pollution caused by inaccurate carbon source dosage in municipal wastewater. To address these problems, a novel carbon source was developed, which was the oxidation products of refractory organic matters in the secondary effluent of municipal wastewater treatment plant (MWWTP) by in-situ generated biogenic manganese oxides (BMOs) in the denitrifying filter. In the steady phase, the effluent chemical oxygen demand (COD), NO-N and total nitrogen (TN) in the denitrifying filter 2 with BMOs was 11.
View Article and Find Full Text PDFThe international campaign to ban bisphenol A (BPA) has resulted in increasing application of BPA substitutes. However, investigations have mainly been confined to the removal of single contaminant from the water, resulting in an inefficient burden. Furthermore, systematic study and synthetical discussion of bisphenol analogues (BPs) kinetics and transformation pathways were largely underemphasized.
View Article and Find Full Text PDFAs a natural source of visible light and a type of renewable energy, solar energy is extensively used in the field of photochemistry. In this study, solar was employed to activate persulfate (PS) to degrade typical micropollutants. The removal kinetics of aspirin (ASA) and flunixin meglumine (FMME) in the solar/PS system were well fitted by pseudo-first-order models (R > 0.
View Article and Find Full Text PDFHumic acid (HA) as a natural coordinating agent was employed to modify the Fenton-like process by promoting the redox cycle of Fe(III)/Fe(II) and enhancing the pH tolerance. However, the roles of coordinating stages of HA-Fe(III) and the dynamic changes of iron species remain unclear. In this study, HA was introduced into the HO-Fe(III) process to investigate the accelerating roles of coordinating stages and systematically reveal the mechanism via the reactive oxygen species (ROS) identification, HA-Fe(III)/Fe(II) redox cycles tracking, electrochemical and kinetic analysis.
View Article and Find Full Text PDFThe degradation of emerging pollutant artificial sweetener sucralose (SUC) using UV/persulfate (UV/PS). The effects of several process parameters, including UV light intensity, PS dosage, pH, and anion concentration, were also investigated. The degradation products and their toxicity during the UV/PS process were further analyzed and evaluated.
View Article and Find Full Text PDFPeroxymonosulfate (PMS) was employed as an activator of ozone (O) to degrade non-steroidal anti-inflammatory drugs (NSAIDs) (aspirin (ASA) and phenacetin (PNT)) in study. The combination of PMS in O system promoted the O decomposition and NSAIDs removal significantly. O molecule, hydroxyl radical (OH) and sulfate radical (SO) were responsible for the removal of target pollutants in O/PMS system.
View Article and Find Full Text PDFThough natural reducing agents have been demonstrated as desirable catalysts for environmental remediation, the mechanism of catalytic activation of persulfate (PS) by bisulfite (S(IV)) remains unclear. In this study, an emerging contaminant bisphenol AF (BPAF) was employed as the target compound to examine the activation and degradation mechanism in PS/S(IV) system. Sulfate radical (SO•-) was evidenced as the dominant radical accounting for BPAF degradation via quantitative analysis, while hydroxyl radical (•OH) and singlet oxygen (O) were minor contributors.
View Article and Find Full Text PDFThe removal of acetaminophen (AAP) in aqueous solution by the UV/chlorine process was evaluated. The effect of chlorine dose, the initial AAP concentration, pH value, and UV intensity on the reaction were also investigated. The degradation mechanism and the ecological risk were further discussed.
View Article and Find Full Text PDF