Publications by authors named "Erda Deng"

This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Polymeric membranes with great processability are attractive for the H/CO separation required for hydrogen production from renewable biomass with carbon capture for utilization and sequestration. However, it remains elusive to engineer polymer architectures to obtain desired sub-3.3 Å ultramicropores to efficiently sieve H from CO.

View Article and Find Full Text PDF

2D nanosheets such as graphene oxide (GO) can be stacked to construct membranes with fine-tuned nanochannels to achieve molecular sieving ability. These membranes are often thin to achieve high water permeance, but their fabrication with consistent nanostructures on a large scale presents an enormous challenge. Herein, GO-based hollow fiber membranes (HFMs) are developed for dye desalination by synergistically combining chemical etching to form in-plane nanopores (10-30 nm) to increase water permeance and polyamine functionalization to improve underwater stability and enable facile large-scale production using existing membrane manufacturing processes.

View Article and Find Full Text PDF

Lead contamination poses significant and lasting health risks, particularly in children. This study explores the efficacy of dried mycelium membranes, distinct from live fungal biomass, for the remediation of lead (Pb(II)) in water. Dried mycelium offers unique advantages, including environmental resilience, ease of handling, biodegradability, and mechanical reliability.

View Article and Find Full Text PDF

Mixed matrix materials (MMMs) containing metal-organic framework (MOF) nanoparticles are attractive for membrane carbon capture. Particularly, adding <5 mass % MOFs in polymers dramatically increased gas permeability, far surpassing the Maxwell model's prediction. However, no sound mechanisms have been offered to explain this unusual low-loading phenomenon.

View Article and Find Full Text PDF

Graphene oxide (GO) nanosheets are negatively charged and exhibit excellent antifouling properties. However, their hydrophilicity makes it challenging for their grafting onto membrane surfaces to improve antifouling properties for long-term underwater operation. Herein, we demonstrate a versatile approach to covalently graft GO onto ultrafiltration membrane surfaces in aqueous solutions at ≈22 °C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong73a2lus8u8hrs6hrrvv4kfghaipd0ak): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once