Publications by authors named "Ercan E Alp"

The nuclear resonant scattering (NRS) experiment requires photon-counting detectors with high time resolution, short dead time, large dynamic range, low noise, and large detection area. An 8-channel avalanche photodiode (APD) array detector system with high integrity, flexibility, and reliability has been developed to adapt to the demands of NRS experiments. The detector system mainly consists of four key parts: (i) an array-APD sensor, (ii) 8-channel integrated fast preamplifiers, (iii) the time-to-digital converter readout electronics, and (iv) a data acquisition system and EPICS support software.

View Article and Find Full Text PDF

We have performed and analyzed the first combined Eu and Fe nuclear resonant vibrational spectroscopy (NRVS) for naturally abundant KEu(III)[Fe(II)(CN)] and Eu(III)[Fe(III)(CN)] complexes. Comparison of the observed Eu Fe NRVS spectroscopic features confirms that Eu(III) in both KEu(III)[Fe(II)(CN)] and Eu(III)[Fe(III)(CN)] occupies a position outside the [Fe(CN)] core and coordinates to the N atoms of the CN ions, whereas Fe(III) or Fe(II) occupies the site inside the [Fe(CN)] core and coordinates to the C atoms of the CN ions. In addition to the spectroscopic interest, the results from this study provide invaluable insights for the design and evaluation of the nanoparticles of such complexes as potential cellular contrast agents for their use in magnetic resonance imaging.

View Article and Find Full Text PDF

Operando nuclear resonant inelastic X-ray scattering (NRIXS) and X-ray absorption fine-structure spectroscopy (XAFS) measurements were used to gain insight into the structure and surface composition of FeCu and FeAg nanoparticles (NPs) during the electrochemical CO reduction (CO RR) and to extract correlations with their catalytic activity and selectivity. The formation of a core-shell structure during CO RR for FeAg NPs was inferred from the analysis of the operando NRIXS data (phonon density of states, PDOS) and XAFS measurements. Electrochemical analysis of the FeAg NPs revealed a faradaic selectivity of 36 % for CO in 0.

View Article and Find Full Text PDF

The electron-phonon interaction (EPI) is instrumental in a wide variety of phenomena in solid-state physics, such as electrical resistivity in metals, carrier mobility, optical transition, and polaron effects in semiconductors, lifetime of hot carriers, transition temperature in BCS superconductors, and even spin relaxation in diamond nitrogen-vacancy centers for quantum information processing. However, due to the weak EPI strength, most phenomena have focused on electronic properties rather than on phonon properties. One prominent exception is the Kohn anomaly, where phonon softening can emerge when the phonon wave vector nests the Fermi surface of metals.

View Article and Find Full Text PDF

Inelastic X-ray scattering is a powerful and versatile technique for studying lattice dynamics in materials of scientific and technological importance. In this article, the design and capabilities of the momentum-resolved high-energy-resolution inelastic X-ray spectrometer (HERIX) at beamline 30-ID of the Advanced Photon Source are reported. The instrument operates at 23.

View Article and Find Full Text PDF

The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO.

View Article and Find Full Text PDF

We have applied Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from , and the MoFe protein of nitrogenase from . Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from .

View Article and Find Full Text PDF

Flexibility is an important property of porphyrins, both natural and synthetic. We applied two synchrotron-based techniques, nuclear resonance vibrational spectroscopy and inelastic X-ray scattering, to quantify this property by measuring the bulk modulus of a protein active-site mimic [chloro(octaethylporphyrinato)iron(III)] and the resilience of the iron environment. Their values are 6.

View Article and Find Full Text PDF

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy.

View Article and Find Full Text PDF

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron site in the iron-sulfur cluster-free hydrogenase Hmd from the methanogenic archaeon Methanothermobacter marburgensis. The spectra have been interpreted by comparison with a cis-(CO)2-ligated Fe model compound, Fe(S2C2H4)(CO)2(PMe3)2, as well as by normal mode simulations of plausible active site structures. For this model complex, normal mode analyses both from an optimized Urey-Bradley force field and from complementary density functional theory (DFT) calculations produced consistent results.

View Article and Find Full Text PDF

Nitrogenase catalyzes a reaction critical for life, the reduction of N(2) to 2NH(3), yet we still know relatively little about its catalytic mechanism. We have used the synchrotron technique of (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the dynamics of the Fe-S clusters in this enzyme. The catalytic site FeMo-cofactor exhibits a strong signal near 190 cm(-)(1), where conventional Fe-S clusters have weak NRVS.

View Article and Find Full Text PDF

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(S(cys))(4) site in reduced and oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). The oxidized form has also been investigated by resonance Raman spectroscopy. In the oxidized Rd NRVS, strong asymmetric Fe-S stretching modes are observed between 355 and 375 cm(-1); upon reduction these modes shift to 300-320 cm(-1).

View Article and Find Full Text PDF

[NEt(4)][FeCl(4)], [P(C(6)H(5))(4)][FeCl(4)], and [NEt(4)](2)[Fe(2)S(2)Cl(4)] have been examined using (57)Fe nuclear resonance vibrational spectroscopy (NRVS). These complexes serve as simple models for Fe-S clusters in metalloproteins. The (57)Fe partial vibrational density of states (PVDOS) spectra were interpreted by computation of the normal modes assuming Urey-Bradley force fields, using additional information from infrared and Raman spectra.

View Article and Find Full Text PDF

We summarize a series of experimental results made with the newly developed high resolution X-ray scattering (IXS) instrument on two pure lipid bilayers, including dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) in both gel and liquid crystal phases, and lipid bilayers containing cholesterol. By analyzing the IXS data based on the generalized three effective eigenmode model (GTEE), we obtain dispersion relations of the high frequency density oscillations (phonons) of lipid molecules in these bilayers. We then compare the dispersion relations of pure lipid bilayers of different chain lengths among themselves and the dispersion relations of pure lipid bilayers with those of the cholesterol containing bilayers.

View Article and Find Full Text PDF

We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,omega) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,omega) is usually complicated.

View Article and Find Full Text PDF

Metal-hydrogen bonding is important in chemistry and catalysis, but H atoms are often difficult to observe, especially in metalloproteins. In this work we show that Fe-H interactions can be probed by nuclear resonance vibrational spectroscopy at the 14.4 keV 57Fe nuclear resonance.

View Article and Find Full Text PDF