Turk J Med Sci
October 2024
Background/aim: YO-AlO-SiO (YAS) glass microspheres are currently used in radioembolization treatment. However, abscess formation can occur following this treatment. This study aims to endow YAS glass microspheres with antibacterial properties to address the abscesses forming in patients after radioembolization treatment.
View Article and Find Full Text PDFPhosphatidic acid and phosphatidylserine are anionic phospholipids with emerging signalling roles in cells. Determination of how phosphatidic acid and phosphatidylserine change location and quantity in cells over time requires selective fluorescent sensors that can distinguish these two anionic phospholipids. However, the design of such synthetic sensors that can selectively bind and respond to a single phospholipid within the complex membrane milieu remains challenging.
View Article and Find Full Text PDFJanus particles are popular in recent years due to their anisotropic physical and chemical properties. Even though there are several established synthesis methods for Janus particles, microfluidics-based methods are convenient and reliable due to low reagent consumption, monodispersity of the resultant particles and efficient control over reaction conditions. In this work a simple droplet-based microfluidic technique is utilized to synthesize magnetically anisotropic TiO2-Fe2O3 Janus microparticles.
View Article and Find Full Text PDFIEEE Trans Image Process
March 2024
Event-based cameras are becoming increasingly popular for their ability to capture high-speed motion with low latency and high dynamic range. However, generating videos from events remains challenging due to the highly sparse and varying nature of event data. To address this, in this study, we propose HyperE2VID, a dynamic neural network architecture for event-based video reconstruction.
View Article and Find Full Text PDFTantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization.
View Article and Find Full Text PDFMagnetic Janus particles have been studied extensively for medical and biological applications owing to their controllable mobility in fluid media. In this work, we report a novel microfluidic device designed for the synthesis of magnetically anisotropic Janus particles made of poly(ethylene glycol) diacrylate and embedded with magnetic iron oxide nanoparticles. Our method consists of a droplet generation step followed by magnetic separation using an external magnetic field and ultraviolet polymerization.
View Article and Find Full Text PDFIn this proof-of-concept study, cardiomyogenic differentiation of induced pluripotent stem cells (iPSCs) is combined with energy harvesting from simulated cardiac motion in vitro. To achieve this, silk fibroin (SF)-based porous scaffolds are designed to mimic the mechanical and physical properties of cardiac tissue and used as triboelectric nanogenerator (TENG) electrodes. The load-carrying mechanism, β-sheet content, degradation characteristics, and iPSC interactions of the scaffolds are observed to be interrelated and regulated by their pore architecture.
View Article and Find Full Text PDFIn this research, a multi-step microfluidic reactor was used to fabricate chitosan - superparamagnetic iron oxide composite nanoparticles (Ch - SPIONs), where composite formation using chitosan was aimed to provide antibacterial property and nanoparticle stability for magnetic resonance imaging (MRI). Monodispersed Ch - SPIONs had an average particle size of 8.8 ± 1.
View Article and Find Full Text PDF3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering.
View Article and Find Full Text PDFCurrent artificial ligaments based on polyethylene terephthalate (PET) are associated with some disadvantages due to their hydrophobicity and low biocompatibility. In this study, we aimed to modify the surface of PET using polyethylene glycol (PEG)-terminated polystyrene (PS)-linoleic nanoparticles (PLinaS-g-PEG-NPs). We accomplished that BMP-2 in two different concentrations encapsulated in nanoparticles with an efficiency of 99.
View Article and Find Full Text PDFACS Biomater Sci Eng
February 2023
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization).
View Article and Find Full Text PDF: infection is associated with chronic gastritis, ulcers, and gastric cancer. The Type 4 secretion system (T4SS) translocates the CagA protein into host cells and plays an essential role in initiating gastric carcinogenesis. The CagL protein is a component of the T4SS.
View Article and Find Full Text PDFJanus particles have been at the center of attention over the years due to their asymmetric nature that makes them superior in many ways to conventional monophase particles. Several techniques have been reported for the synthesis of Janus particles; however, microfluidic-based techniques are by far the most popular due to their versatility, rapid prototyping, low reagent consumption and superior control over reaction conditions. In this review, we will go through microfluidic-based Janus particle synthesis techniques and highlight how recent advances have led to complex functionalities being imparted to the Janus particles.
View Article and Find Full Text PDFCurrent approaches to develop bone tissue engineering scaffolds have some limitations and shortcomings. They mainly suffer from combining mechanical stability and bioactivity on the same platform. Synthetic polymers are able to produce mechanically stable sturctures with fibrous morphology when they are electrospun, however, they cannot exhibit bioactivity, which is crucial for tissue engineering and regenerative medicine.
View Article and Find Full Text PDF(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC).
View Article and Find Full Text PDFDifferent types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2022
Nerve guidance channels (NGCs) promote cell-extracellular matrix (ECM) interactions occurring within the nanoscale. However, studies focusing on the effects of nanophase topography on neural cell functions are limited, and mostly concentrated on the sub-micron level (>100 nm) surface topography. Therefore, the aim of this study was to fabricate <100 nm sized structures on poly lactic-co-glycolic acid (PLGA) films used in NGC applications to assess the effects of nanophase topography on neural cell functions.
View Article and Find Full Text PDFBackground: During the COVID-19 pandemic, individuals faced psychological stress caused by fear and anxiety due to the high transmission and mortality rate of the disease, the social isolation, economic problems, and difficulties in reaching health services. Fibromyalgia (FM) is a chronic centralized pain sensitivity disorder. Psychological, physical and/or autoimmune stressors were found to increase FM symptoms.
View Article and Find Full Text PDFCholesterol is essential for cell physiology. Transport of the "accessible" pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER-localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear.
View Article and Find Full Text PDFCarbon enriched bioceramic (C-Bio) scaffolds have recently shown exceptional results in terms of their biological and mechanical properties. The present study aims at assessing the ability of the C-Bio scaffolds to affect the commitment of canine adipose-derived mesenchymal stem cells (cAD-MSCs) and investigating the influence of carbon on cell proliferation and osteogenic differentiation of cAD-MSCs in vitro. The commitment of cAD-MSCs to an osteoblastic phenotype has been evaluated by expression of several osteogenic markers using real-time PCR.
View Article and Find Full Text PDFObjective: To evaluate the effect of point of care ultrasonography (POCUS) performed for heart, lung, aorta, hepatobiliary and deep veins on the diagnosis, length of stay (LOS) in emergency department (ED) and cost in patients admitted to the ED with chest pain.
Study Design: Prospective randomised controlled, parallel-group trial.
Place And Duration Of Study: Sakarya University Training and Research Hospital, Sakarya Turkey, from September 2018 to March 2019.
Recently Nutrition and Food Chemistry researches have been focused on plants and their products or their secondary metabolites having anti-alzheimer, anti-cancer, anti-aging, and antioxidant properties. Among these plants L. (Lamiaceae) species come into prominence with their booster effects due to high antioxidant contents, which have over 900 species in the world and 98 in Turkey.
View Article and Find Full Text PDFTissue engineering applications typically require three-dimensional scaffolds which provide the requisite surface area for cellular functions, while allowing transport of nutrients, waste and oxygen to and from the surrounding tissues. Scaffolds need to ensure sufficient mechanical properties to provide mechanically stable frameworks under physiologically relevant stress levels. Meanwhile, electrically conductive platforms are also desirable for the regeneration of specific tissues, where electrical impulses are transmitted throughout the tissue for proper physiological functioning.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2020
Tantalum possesses remarkable chemical and mechanical properties, and thus it is considered to be one of the next generation implant materials. However, the biological properties of tantalum remain to be improved for its use in tissue engineering applications. To enhance its cellular interactions, implants made of tantalum could be modified to obtain nanofeatured surfaces via the electrochemical anodization process.
View Article and Find Full Text PDFExosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs).
View Article and Find Full Text PDF