Gastric cancer (GC) remains the third deadliest malignancy in China. Despite the current understanding that the long noncoding RNAs (lncRNAs) play a pivotal function in the growth and progression of cancer, their prognostic value in GC remains unclear. Therefore, we aimed to construct a polymolecular prediction model by employing a competing endogenous RNA (ceRNA) network signature obtained by integrated bioinformatics analysis to evaluate patient prognosis in GC.
View Article and Find Full Text PDFDNA damage plays a key role in various biological processes involved in malignant disease, the role of the DNA damage repair gene (essential meiotic structure-specific endonuclease 1) in gastric cancer (GC) development is unknown. This work aimed to investigate expression and role of in tumorigenesis. Quantitative real-time polymerase chain reaction (qRT-PCR), immunoblot, cell viability and dual-luciferase reporter assays, RNAi and gene transfection, and immunofluorescent staining were performed to assess regulation in GC tumorigenesis.
View Article and Find Full Text PDFEmerging evidence indicates that myeloma overexpressed (MYEOV) is an oncogene and plays crucial roles in multiple human cancers. However, its roles in the development of pancreatic ductal adenocarcinoma (PDAC) remain elusive. Here, we provide evidence of essential roles of MYEOV in the development and progression of PDAC.
View Article and Find Full Text PDFImpaired epithelial regeneration is a crucial pathophysiological feature of ulcerative colitis (UC). Yes-associated protein (YAP1) appears to control cell proliferation and differentiation. In this study, we sought to identify the roles of YAP in intestinal epithelial cell (IEC) self-renewal, regeneration and tumorigenesis.
View Article and Find Full Text PDFIL-23p19 plays important roles in intestinal antimicrobial immunity, while its over-expression can lead to intestinal inflammation. However, the bacterial compounds and the type of pattern recognition receptor involved in the inducible expression of IL-23p19 in Paneth cells remain unclear. Here we show that the mRNA expression of IL-23p19 was increased in Paneth cell (PC)-like cells stimulated by Toll-like receptor 2 (TLR2) ligands, peptidoglycan (PGN) and Pam3CSK4, and was further increased in the presence of nucleotide-binding oligomerization domain 2 (NOD2)-ligand muramyl dipeptide (MDP).
View Article and Find Full Text PDF