Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry.
View Article and Find Full Text PDFThe human genome sequence has been finished to very high standards; however, more than 340 gaps remained when the finished genome was published by the International Human Genome Sequencing Consortium in 2004. Using fosmid resources generated from multiple individuals, we targeted gaps in the euchromatic part of the human genome. Here we report 2,488,842 bp of previously unknown euchromatic sequence, 363,114 bp of which close 26 of 250 euchromatic gaps, or 10%, including two remaining euchromatic gaps on chromosome 19.
View Article and Find Full Text PDFThe APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene.
View Article and Find Full Text PDFThe gibbon karyotype is known to be extensively rearranged when compared to the human and to the ancestral primate karyotype. By combining a bioinformatics (paired-end sequence analysis) approach and a molecular cytogenetics approach, we have refined the synteny block arrangement of the white-cheeked gibbon (Nomascus leucogenys, NLE) with respect to the human genome. We provide the first detailed clone framework map of the gibbon genome and refine the location of 86 evolutionary breakpoints to <1 Mb resolution.
View Article and Find Full Text PDFStructural changes (deletions, insertions, and inversions) between human and chimpanzee genomes have likely had a significant impact on lineage-specific evolution because of their potential for dramatic and irreversible mutation. The low-quality nature of the current chimpanzee genome assembly precludes the reliable identification of many of these differences. To circumvent this, we applied a method to optimally map chimpanzee fosmid paired-end sequences against the human genome to systematically identify sites of structural variation > or = 12 kb between the two species.
View Article and Find Full Text PDFMaM is a software tool that processes and manipulates multiple alignments of genomic sequence. MaM computes the exact location of common repeat elements, exons and unique regions within aligned genomics sequences using a variety of user identified programs, databases and/or tables. The program can extract subalignments, corresponding to these various regions of DNA to be analyzed independently or in conjunction with other elements of genomic DNA.
View Article and Find Full Text PDFInversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints.
View Article and Find Full Text PDFHuman DNA consists of a large number of tandem repeat sequences. Such sequences are usually called satellites, with the primary example being the centromeric alpha-satellite DNA. The basic repeat unit of the alpha-satellite DNA is a 171 bp monomer.
View Article and Find Full Text PDFComplex eukaryotic genomes are now being sequenced at an accelerated pace primarily using whole-genome shotgun (WGS) sequence assembly approaches. WGS assembly was initially criticized because of its perceived inability to resolve repeat structures within genomes. Here, we quantify the effect of WGS sequence assembly on large, highly similar repeats by comparison of the segmental duplication content of two different human genome assemblies.
View Article and Find Full Text PDFWe assessed the content, structure, and distribution of segmental duplications (> or =90% sequence identity, > or =5 kb length) within the published version of the Rattus norvegicus genome assembly (v.3.1).
View Article and Find Full Text PDFThe laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome.
View Article and Find Full Text PDFHuman DNA consists of a large number of tandem repeat sequences. Such sequences are usually called satellites, with the primary example being the centromeric alpha-satellite DNA. The basic repeat unit of the alpha-satellite DNA is a 171 bp monomer.
View Article and Find Full Text PDFWe performed a detailed analysis of both single-nucleotide and large insertion/deletion events based on large-scale comparison of 10.6 Mb of genomic sequence from lemur, baboon, and chimpanzee to human. Using a human genomic reference, optimal global alignments were constructed from large (>50-kb) genomic sequence clones.
View Article and Find Full Text PDF