Modelling the spatiotemporal dynamics in the activity of neural populations while also enabling their flexible inference is hindered by the complexity and noisiness of neural observations. Here we show that the lower-dimensional nonlinear latent factors and latent structures can be computationally modelled in a manner that allows for flexible inference causally, non-causally and in the presence of missing neural observations. To enable flexible inference, we developed a neural network that separates the model into jointly trained manifold and dynamic latent factors such that nonlinearity is captured through the manifold factors and the dynamics can be modelled in tractable linear form on this nonlinear manifold.
View Article and Find Full Text PDFInferring complex spatiotemporal dynamics in neural population activity is critical for investigating neural mechanisms and developing neurotechnology. These activity patterns are noisy observations of lower-dimensional latent factors and their nonlinear dynamical structure. A major unaddressed challenge is to model this nonlinear structure, but in a manner that allows for flexible inference, whether causally, non-causally, or in the presence of missing neural observations.
View Article and Find Full Text PDF