Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory.
View Article and Find Full Text PDFBackground: Translocation of the SRY gene to the paternal X chromosome is the explanation for testis development in the majority of subjects with 46,XX testicular disorder of sexual development (DSD). However, nearly all subjects with 46,XX ovotesticular DSD and up to one third of subjects with 46,XX testicular DSD lack SRY. SRY-independent expression of SOX9 has been implicated in the etiology of testis development in some individuals.
View Article and Find Full Text PDFBackground: Tescalcin is an EF-hand calcium-binding protein that interacts with the Na+/H+ exchanger 1 (NHE1). Levay and Slepak recently proposed a role for tescalcin in megakaryopoiesis that was independent of NHE1 activity. Their studies using K562 and HEL cell lines, and human CD34+ hematopoietic stem cells suggested an essential role for tescalcin in megakaryocyte differentiation.
View Article and Find Full Text PDFTescalcin, an EF-hand calcium binding protein that regulates the Na(+)/H(+) exchanger 1 (NHE1), is highly expressed in various mouse tissues such as heart and brain. Despite its potentially important role in cell physiology, the mechanisms that regulate tescalcin gene (Tesc) expression are unknown. In this study, we report two new Tesc mRNA variants (V2 and V3) and characterize the mouse Tesc promoter.
View Article and Find Full Text PDFThe tescalcin gene (Tesc) encodes an EF-hand calcium-binding protein that interacts with the sodium/hydrogen exchanger, NHE1. Previous studies indicated that Tesc was expressed in mouse embryonic testis, but not in ovary, during the critical period of testis and ovary determination. In this paper we compared the expression of Tesc in embryonic tissues of chicken and mouse.
View Article and Find Full Text PDFWe present a case of 46,XX sex reversal in the absence of SRY but with partial duplication of chromosome 22q. The subject had multiple congenital anomalies but nearly complete masculinization of the external genitalia. Our case along with a previous case supports the existence of a gene on chromosome 22q that can trigger testis determination in the absence of SRY.
View Article and Find Full Text PDFThe tescalcin gene is preferentially expressed during mouse testis differentiation. Here, we demonstrate that this gene encodes a 24 kDa Ca(2+)- and Mg(2+)-binding protein with one consensus EF-hand and three additional domains with EF-hand homology. Equilibrium dialysis with (45)Ca(2+) revealed that recombinant tescalcin binds approximately one Ca(2+) ion at physiological concentrations (pCa 4.
View Article and Find Full Text PDF