Piezoelectric semiconductors (PSs) possess the physical properties of piezoelectric and semiconductor simultaneously. When a piezomagnetic (PM) material is added to the PS, the composite structures will exhibit the comprehensive mageto-electro-semiconductive (MES) coupling effects. In this paper, the propagation characteristics of shear horizontal (SH) waves in a multiferroic composite semiconductor structure are investigated, where a n-type PS thin plate is perfectly bonded to a semi-infinite PM substrate.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2023
The present paper presents an innovative numerical model for predicting stress concentrations in composite materials in a multi-physics context. The numerical approach is based on the Carrera unified formulation, a numerical tool able to handle any kinematic model using a unified and compact notation. A general formulation for one-, two- and three-dimensional higher-order models has been presented.
View Article and Find Full Text PDFThe present paper assessed the use of variable kinematic two-dimensional elements in the dynamic analysis of Lamb waves propagation in an isotropic plate with piezo-patches. The multi-field finite element model used in this work was based on the Carrera Unified Formulation which offers a versatile application enabling the model to apply the desired order theory. The used variable kinematic model allowed for the kinematic model to vary in space, thereby providing the possibility to implement a classical plate model in collaboration with a refined kinematic model in selected areas where higher order kinematics are needed.
View Article and Find Full Text PDFThis work investigates quasi-static crack propagation in specimens made of brittle materials by combining local and non-local elasticity models. The portion of the domain where the failure initiates and then propagates is modeled via three-dimensional bond-based peridynamics (PD). On the other hand, the remaining regions of the structure are analyzed with high order one-dimensional finite elements based on the Carrera unified formulation (CUF).
View Article and Find Full Text PDFNew concepts of lightweight components are conceived nowadays thanks to the advances in the manufacture of composite structures. For instance, mature technologies such as Automatic Fibre Placement (AFP) are employed in the fabrication of structural parts where fibres are steered along curvilinear paths, namely variable angle tow (VAT), which can enhance the mechanical performance and alleviate the structural weight. This is of utmost importance in the aerospace field, where weight savings are one of the main goals.
View Article and Find Full Text PDFThis paper proposes a novel experimental investigation based on 3D printing to validate numerical models for biomechanics simulations. Soft elastomeric materials have been used in Polyjet multi-material 3D printer to mimicking arteries affected by atherosclerotic plaque. The nonlinear mechanical properties of five digital materials are characterized and used as an input for finite element (FE) modeling.
View Article and Find Full Text PDF