Publications by authors named "Eranezhuth Wasan Awin"

The pyrolysis (1000 °C) of a liquid poly(vinylmethyl--methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000-1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere.

View Article and Find Full Text PDF

In this work, nanocomposites made of nanosized zirconia crystallized in situ in an amorphous silicon oxycarbo(nitride) (SiOC(N)) matrix have been designed through a precursor route for visible light photocatalytic applications. The relative volume fraction of the starting precursors and the pyrolysis temperatures not only influences the phase fraction of zirconia crystallites but also stabilizes the tetragonal crystal structure of zirconia (t-ZrO) at room temperature. The presence of carbon in interstitial sites of zirconia and oxygen vacancy defects led to drastic reduction in the band gap (2.

View Article and Find Full Text PDF

Nanometric powder particles of white zirconia were synthesized through precursor route by the pyrolysis of zirconium (IV) butoxide at varied temperatures in air ranging from 900-1400 °C and were predominantly monoclinic in nature. To control the defect chemistry, the precursor was also pyrolyzed in a reduced atmosphere at 900 °C, eventually resulting in black zirconia. The stabilization of tetragonal phase and observed color change from white to black in samples pyrolyzed under reduced atmosphere was attributed to the creation of oxygen vacancies and disorder.

View Article and Find Full Text PDF

Titania (TiO₂) is considered to have immense potential as a photocatalyst, the anatase phase in particular. There have been numerous attempts to push the limits of its catalytic activity to higher wavelengths to harness the visible electromagnetic radiation. Most of the investigations till date have been restricted to fine-tuning the bandgap by doping, control of defect chemistry at the surface and several to first principle simulations either with limited success or success at the cost of complexities in processing.

View Article and Find Full Text PDF