Publications by authors named "Eranda Nikolla"

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Perovskite-based oxides are used in electrochemical CO and HO reduction in electrochemical cells due to their compositional versatility, redox properties, and stability. However, limited knowledge exists on the mechanisms driving these processes. Toward this understanding, herein we probe the core level binding energy shifts of water-derived adspecies (H, O, OH, HO) as well as the adsorption of CO on LaCoO and LaNiO and correlate the simulated peaks with experimental temperature-programmed X-ray photoelectron spectroscopy (TPXPS) results.

View Article and Find Full Text PDF

Interest in energy-to-X and X-to-energy (where X represents green hydrogen, carbon-based fuels, or ammonia) technologies has expanded the field of electrochemical conversion and storage. Solid oxide electrochemical cells (SOCs) are among the most promising technologies for these processes. Their unmatched conversion efficiencies result from favorable thermodynamics and kinetics at elevated operating temperatures (400-900 °C).

View Article and Find Full Text PDF

Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A B O ( = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A B O oxides ( = 1 (ABO) or = ∞ (ABO); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition.

View Article and Find Full Text PDF

Atmospheric NO is of great concern due to its adverse effects on human health and the environment, motivating research on NO detection and remediation. Existing low-cost room-temperature NO sensors often suffer from low sensitivity at the ppb level or long recovery times, reflecting the trade-off between sensor response and recovery time. Here, we report an atomically dispersed metal ion strategy to address it.

View Article and Find Full Text PDF

Dwindling fossil fuel resources and substantial release of CO from their processing have increased the appeal to use biomass as a sustainable platform for synthesis of chemicals and fuels. Steps toward this will require selective upgrading of biomass to suitable intermediates. Traditionally, biomass upgrading has involved thermochemical processes that require excessive amounts of petrochemical-derived H and suffer from poor product selectivity.

View Article and Find Full Text PDF

Oxygen electrocatalysis plays a critical role in the efficiency of important energy conversion and storage systems. While many efforts have focused on designing efficient electrocatalysts for these processes, optimal catalysts that are inexpensive, active, selective, and stable are still being searched. Nonstoichiometric, mixed-metal oxides present a promising group of electrocatalysts for these processes due to the versatility of the surface composition and fast oxygen conducting properties.

View Article and Find Full Text PDF

Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols.

View Article and Find Full Text PDF

Isomerization of sugars is used in a variety of industrially relevant processes and in glycolysis. Here, we show that hydrophobic zeolite beta with framework tin or titanium Lewis acid centers isomerizes sugars, e.g.

View Article and Find Full Text PDF

We have used X-ray absorption spectroscopy and quantum chemical density functional theory calculations to identify critical features in the electronic structure of different sites in alloys that govern the local chemical reactivity. The measurements led to a simple model relating local geometric features of a site in an alloy to its electronic structure and chemical reactivity. The central feature of the model is that the formation of alloys does not lead to significant charge transfer between the constituent metal elements in the alloys, and that the local electronic structure and chemical reactivity can be predicted based on physical characteristics of constituent metal elements in their unalloyed form.

View Article and Find Full Text PDF

Identifying structure-performance relationships is critical for the discovery and optimization of heterogeneous catalysts. Recent theoretical contributions have led to the development of d-band theory, which relates the calculated electronic structure of a metal to its chemical and catalytic activity. While there are many contributions where quantum-chemical calculations have been utilized to validate the d-band theory, experimental examples relating the electronic structures of commercially relevant nonmodel catalysts to their performance are lacking.

View Article and Find Full Text PDF

Steam reforming is a process where a hydrocarbon is converted into hydrogen and oxygenated carbon species. Ni is often used as catalyst for the reaction. Long term stability of steam reforming catalysts is governed by their ability to selectively oxidize C atoms while preventing C-C bond formation.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqbtnbgsro83ckksos80n3gcmu07liuij): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once