The two major classes of unconventional superconductors, cuprates and Fe-based superconductors, have magnetic parent compounds, are layered, and generally feature square-lattice symmetry. We report the discovery of pressure-induced superconductivity in a nonmagnetic and wide band gap 1.95 eV semiconductor, CuISe, with a unique anisotropic structure composed of two types of distinct molecules: Se rings and CuI dimers, which are linked in a three-dimensional framework.
View Article and Find Full Text PDFThe precision of melting curve measurements using laser-heated diamond anvil cell (LHDAC) is largely limited by the correct and reliable determination of the onset of melting. We present a novel image analysis of speckle interference patterns in the LHDAC as a way to define quantitative measures which enable an objective determination of the melting transition. Combined with our low-temperature customized IR pyrometer, designed for measurements down to 500 K, our setup allows studying the melting curve of materials with low melting temperatures, with relatively high precision.
View Article and Find Full Text PDF