Over the last years, there is a dramatic increase in the use of medical cannabis products for an expanding range of clinical indications. The type of the drug product and its administration route affect substantially the rate and the extent of absorption of cannabinoids and the effects induced by them in the patients. The current challenge for the cannabis pharmaceutical industry is to develop formulations that allow predictable and stable absorption of cannabinoids.
View Article and Find Full Text PDFRedox reactions play key roles in fundamental biological processes. The related spatial organization of donors and acceptors is assumed to undergo evolutionary optimization facilitating charge mobilization within the relevant biological context. Experimental information from submolecular functional sites is needed to understand the organization strategies and driving forces involved in the self-development of structure-function relationships.
View Article and Find Full Text PDFPhotosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43 °C but only at elevated CO(2) (1%).
View Article and Find Full Text PDFThe cyclic tetrapyrroles, viz. chlorophylls (Chl), their bacterial analogs bacteriochlorophylls, and hemes are ubiquitous cofactors of biological catalysis that are involved in a multitude of reactions. One systematic approach for understanding how Nature achieves functional diversity with only this handful of cofactors is by designing de novo simple and robust protein scaffolds with heme and/or (bacterio)chlorophyll [(B)Chls]-binding sites.
View Article and Find Full Text PDF