SnO/TiO type II heterojunctions are often introduced to enhance the separation efficiency of photogenerated carriers in photoelectrochemical electrodes, while most of these heterojunctions are of core-shell structure, which often limits the synergistic effect from the two components. In this work, dissymmetric SnO/TiO side-by-side bi-component nanofibers (SBNFs) with tunable composition ratios have been prepared by a novel needleless electrospinning technique with two V-shape connected conductive channels (V-channel electrospinning). Results show that this V-channel electrospinning technique is more stable, controllable and tunable for the large-scale preparation of SBNF materials compared to the traditional electrospinning using two side-by-side metal needles.
View Article and Find Full Text PDFWell-crystallizedβ-SiC nanorods grown on electrospun nanofibers were synthesized by carbothermal reduction of Tb doped SiO2(SiO2:Tb) nanofibers at 1,250 °C. The as-synthesized SiC nanorods were 100-300 nm in diameter and 2-3 μm in length. Scanning electron microscopy (SEM) results suggested that the growth of the SiC nanorods should be governed by vapor-liquid-solid (VLS) mechanism with Tb metal as catalyst.
View Article and Find Full Text PDFThe structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured.
View Article and Find Full Text PDF