In this study, we used bioinformatic tools to analyze the 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR) genes from Glycyrrhiza uralensis, Artemisia annua, and Arabidopsis thaliana. The results indicated that GuHMGR and AaHMGR contained two transmembrane regions while AtHMGR had three transmembrane regions. GuHMGR, AaHMGR, and AtHMGR all had the active center for catalysis.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
August 2020
In this study, citrate synthase gene(CIT2), and malate synthase gene(MLS1) were successfully knocked out in β-amyrin-producing yeast cells by using CRISPR/CAS9. The promoter of phosphoglucose isomerase gene(PGI1) was replaced by that of cytochrome c oxidase subunit Ⅶa(Cox9)to weaken its expression, aiming to channel more carbon flux into the NADPH-producing pathway. The fermentation results showed that CIT2 deletion had no effect on the β-amyrin production.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
April 2019
In this study, the synthetic pathway of β-amyrin was constructed in the pre-constructed Saccharomyces cerevisiae chassis strain Y0 by introducing β-amyrin synthase from Glycyrrhiza uralensis, resulting strain Y1-C20-6, which successfully produced β-amyrin up to 5.97 mg·L~(-1). Then, the mevalonate pyrophosphate decarboxylase gene(ERG19), mevalonate kinase gene(ERG12), 3-hydroxy-3-methylglutaryl-CoA synthase gene(ERG13), phosphomevalonate kinase gene(ERG8) and IPP isomerase gene(IDI1)were overexpressed to promoted the metabolic fluxto the direction of β-amyrin synthesis for further improving β-amyrin production, resulting the strain Y2-C2-4 which produced β-amyrin of 10.
View Article and Find Full Text PDF