As the cornerstone of AI generated content, data drives human-machine interaction and is essential for developing sophisticated deep learning agents. Nevertheless, the associated data storage poses a formidable challenge from conventional energy-intensive planar storage, high maintenance cost, and the susceptibility to electromagnetic interference. In this work, we introduce the concept of metasurface disk, meta-disk, to expand the capacity limits of optical holographic storage by leveraging uncorrelated structural twist.
View Article and Find Full Text PDFPushing the information states' acquisition efficiency has been a long-held goal to reach the measurement precision limit inside scattering spaces. Recent studies have indicated that maximal information states can be attained through engineered modes; however, partial intrusion is generally required. While non-invasive designs have been substantially explored across diverse physical scenarios, the non-invasive acquisition of information states inside dynamic scattering spaces remains challenging due to the intractable non-unique mapping problem, particularly in the context of multi-target scenarios.
View Article and Find Full Text PDFRecent breakthroughs in deep learning have ushered in an essential tool for optics and photonics, recurring in various applications of material design, system optimization, and automation control. Deep learning-enabled on-demand metasurface design has been the subject of extensive expansion, as it can alleviate the time-consuming, low-efficiency, and experience-orientated shortcomings in conventional numerical simulations and physics-based methods. However, collecting samples and training neural networks are fundamentally confined to predefined individual metamaterials and tend to fail for large problem sizes.
View Article and Find Full Text PDFThis paper investigates the diffusion barrier performance of 2D layered materials with pre-existing vacancy defects using first-principles density functional theory. Vacancy defects in 2D materials may give rise to a large amount of Cu accumulation, and consequently, the defect becomes a diffusion path for Cu. Five 2D layered structures are investigated as diffusion barriers for Cu, i.
View Article and Find Full Text PDFWe fabricate samples of aluminum ultrathin films with hexagonal nanohole arrays and characterize the transmission performance. High optical transmittance larger than 60% over a broad wavelength range from 430 nm to 750 nm is attained experimentally. The Fano-type resonance of the excited surface plasmon plaritons and the directly transmitted light attribute to both of the broadband transmission enhancement and the transmission suppression dips.
View Article and Find Full Text PDFWe have systematically investigated the wideband slow light in two-dimensional material graphene, revealing that graphene exhibits much larger slow light capability than other materials. The slow light performances including material dispersion, bandwidth, dynamic control ability, delay-bandwidth product, propagation loss, and group-velocity dispersion are studied, proving graphene exhibits significant advantages in these performances. A large delay-bandwidth product has been obtained in a simple yet functional grating waveguide with slow down factor c/v(g) at 163 and slow light bandwidth Δω at 94.
View Article and Find Full Text PDFWe derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals.
View Article and Find Full Text PDFThis Letter presents an analytical expression for the equivalent impedance of the fundamental mode of both 2D and 3D metal-insulator-metal (MIM) plasmonic waveguides. It also presents circuit models for passive 2D MIM waveguide components represented by additional parasitic circuit elements. Moreover, a modeling library for various 2D MIM waveguide structures is developed.
View Article and Find Full Text PDFWe numerically report the submicrometer radius (0.5 μm) and high confinement (mode area ~λ(2)/1200) plasmonic ring resonators for both all-pass and add-drop filters based on the hybrid metal-oxide-semiconductor (Ag-SiO(2)-Si) waveguide platform. The best tradeoff between the propagation length and the confinement of this hybrid plasmonic waveguide platform is also discussed and compared to the dielectric-loaded plasmonic waveguide counterpart.
View Article and Find Full Text PDFWe demonstrate strong chiral optical response in three-dimensional chiral nanoparticle oligomers in the wavelength regime between 700 and 3500 nm. We show in experiment and simulation that this broad-band response occurs at the onset of charge transfer between the individual nanoparticles. The ohmic contact causes a strong red shift of the fundamental mode, while the geometrical shape of the resulting fused particles still allows for an efficient excitation of higher order modes.
View Article and Find Full Text PDFWe propose a quarter-wave plate based on nanoslits and analyze it using a semianalytical theory and simulations. The device comprises two nanoslits arranged perpendicular to one another where the phases of the fields transmitted by the nanoslits differ by λ/4. In this way, the polarization state of the incident light can be changed from linear to circular or vice versa.
View Article and Find Full Text PDFWireless body area network (WBAN) is a new enabling system with promising applications in areas such as remote health monitoring and interpersonal communication. Reliable and optimum design of a WBAN system relies on a good understanding and in-depth studies of the wave propagation around a human body. However, the human body is a very complex structure and is computationally demanding to model.
View Article and Find Full Text PDFWe demonstrate the fabrication and characterization of three-dimensional (3D) metamaterials in the terahertz (THz) range using the microfluidic-jetted technique. This technique has proven a convenient technique to fabricate metamaterial structures at the micrometer scale. The metamaterials are fabricated using dodecanethiol functionalized gold nanoparticles on flexible polyimide substrates.
View Article and Find Full Text PDFA novel structure is proposed to electrically detect the plasmonic waves from a subwavelength plasmonic waveguide. By locating two L-shaped metallic nanorods in close proximity of each other at the end of the plasmonic waveguide, a metal-semiconductor-metal plasmonic detector is constructed. The L-shaped nanorods also form a dipole nanoantenna and a nanocavity to focus the photonic power into the active volume of the detector.
View Article and Find Full Text PDFWhile plasmonic metamaterials find numerous applications in the field of nanophotonic devices, a device may work as a normal or plasmonic device, depending on whether it operates at the resonance mode. In this paper, the extraordinary light transmission through coaxial polygonal aperture arrays, including circle, hexagon, square, and triangle geometries, is studied using FDTD simulation. Circular, hexagonal and squared aperture arrays have similar high transmission rate, while triangular aperture array has considerably lower transmission rate.
View Article and Find Full Text PDFIn this paper a new silver (Ag) nanoparticle-based structure is presented which shows potential as a device for front end applications, in nano-interconnects or power dividers. A novel oxide bar ensures waveguiding and control of the signal strength with promising results. The structure is simulated by the two dimensional finite difference time domain (FDTD) method considering TM polarization and the Drude model.
View Article and Find Full Text PDFA new image reconstruction algorithm, termed as delay-multiply-and-sum (DMAS), for breast cancer detection using an ultra-wideband confocal microwave imaging technique is proposed. In DMAS algorithm, the backscattered signals received from numerical breast phantoms simulated using the finite-difference time-domain method are time shifted, multiplied in pair, and the products are summed to form a synthetic focal point. The effectiveness of the DMAS algorithm is shown by applying it to backscattered signals received from a variety of numerical breast phantoms.
View Article and Find Full Text PDFThe interactions between electromagnetic field and arbitrarily shaped metallic nanoparticles are numerically investigated. The scattering and near field intensity of nanoparticles are characterized by using volume integral equation which is formulated by considering the total electric field, i.e.
View Article and Find Full Text PDFThe surface integral equation (SIE) method is utilized to characterize plasmonic waveguide made of two parallel chains of silver nanowires with radius of 25nm fed by a V-shaped funnel at a working wavelength of 600nm. The efficiency of energy transport along the waveguide due to surface plasmonic coupling is investigated for different dimensions and shapes. The opening angle of the V-shaped funnel region for optimum light capturing is included in the investigation as well.
View Article and Find Full Text PDF