Publications by authors named "Epting Jannis"

Built-up areas are known to heavily impact the thermal regime of the shallow subsurface. In many cities, the answer to densification is to increase the height and depth of buildings, which leads to a steady growth in the number of underground car parks. These underground car parks are heated by waste heat from car engines and are typically several degrees warmer than the surrounding subsurface, which makes them a heat source for ambient subsurface and groundwater.

View Article and Find Full Text PDF

As climate change adaptation strategies, both Managed Aquifer (MAR) and Surface Water Recharge (MSWR) are not only highly suitable tools to mitigate negative effects on water resources but also bear large potential for concomitant exploitation of thermal energy. They should thus form an integral part of any sustainable water resources management strategy. However, while at global scale general water resource adaptation and mitigation measures are discussed widely, measures that build on thermal exploitation of MAR and MSWR, and which are readily adaptable to various different local and regional scale conditions, have yet to be developed.

View Article and Find Full Text PDF

Knowledge on the intensity and extension of current subsurface urban heat islands (SUHI) is not only based on the availability of spatiotemporal high-resolution and long-term groundwater monitoring data but also in-depth investigations on the role of single natural and anthropogenic factors. A holistic city-scale 3D FEM model is presented to introduce possible thermal management applications in the Milan metropolitan area such as: (1) understanding the hydro-thermal regime of the urban aquifer disentangling the thermal contribution of natural and anthropogenic heat sources, (2) quantifying the geothermal potential and (3) investigating the effects of urbanization and climate change scenarios. Focusing on the most relevant heat sources (boundaries) and transport mechanisms (parameters), this work deals with (I) the reconstruction of large-scale aquifer heterogeneities to consider the advective dominated heat transport, (II) the accurate definition of the upper thermal boundary by a coupled analytical solution and (III) the integration of natural and human-related fluid/heat sources as transient boundary conditions.

View Article and Find Full Text PDF

In Basel (CH), the thermal impact of various subsurface structures on urban groundwater resources, including five underground parking lots and a freeway tunnel, were investigated by monitoring systems. Data were analyzed together with meteorological and groundwater temperature data and results from heat-transport modelling.Significantly elevated temperatures between 18.

View Article and Find Full Text PDF

Karst aquifers provide drinking water for 10% of the world's population, support agriculture, groundwater-dependent activities, and ecosystems. These aquifers are characterised by complex groundwater-flow systems, hence, they are extremely vulnerable and protecting them requires an in-depth understanding of the systems. Poor data accessibility has limited advances in karst research and realistic representation of karst processes in large-scale hydrological studies.

View Article and Find Full Text PDF

Riverbank filtration (RBF) is used worldwide to produce high quality drinking water. With river water often contaminated by micropollutants (MPs) from various sources, this study addresses the occurrence and fate of such MPs at three different RBF sites with oxic alluvial sediments and short travel times to the drinking water well down to hours. A broad range of MPs with various physico-chemical properties were analysed with detection limits in the low ng L range using solid phase extraction followed by liquid chromatography coupled to tandem high resolution mass spectrometry.

View Article and Find Full Text PDF

The implications of intensive use of shallow geothermal energy resources in shallow urban aquifers are still not known for waterborne pathogens relevant to human health. Firstly, we hypothesized that waterborne enteric pathogens would be relatively increased in heated groundwater plumes. To prove this, microbiological sampling of 31 piezometers covering the domain of an urban groundwater body affected by microbiological contamination and energetically exploited by 70 groundwater heat pump systems was performed.

View Article and Find Full Text PDF

Increasing anthropogenic impacts lead to elevated temperatures of the shallow subsurface, including the unsaturated and groundwater saturated zone, in many urban areas in comparison to unaffected natural thermal states. The "current thermal state" of four groundwater bodies in the urban area of Basel-City, Switzerland, was investigated by means of high-resolution multilevel temperature wells and numerical 3D groundwater flow and heat transport models. The calibrated and validated numerical groundwater flow and heat transport models allow evaluating and comparing groundwater and heat fluxes for the investigated groundwater bodies and defined cross-sections for differing urban districts, e.

View Article and Find Full Text PDF

The presented work illustrates to what extent field investigations as well as monitoring and modeling approaches are necessary to understand the high discharge dynamics and vulnerability of Karst springs. In complex settings the application of 3D geological models is essential for evaluating the vulnerability of Karst systems. They allow deriving information on catchment characteristics, as the geometry of aquifers and aquitards as well as their displacements along faults.

View Article and Find Full Text PDF

Drinking water production in the vicinity of rivers not only requires the consideration of different spatiotemporal scales and settings of river-groundwater interaction processes, but also of local and regional scale groundwater regimes. Selected case studies in combination with field-experiments and the setup of high-resolution groundwater flow models enabled the investigation of the spatiotemporal development of microbial (classical fecal indicator bacteria and total cell counts) and selected organic micropollutants in riverine and regional groundwater for different hydrological settings, including low and high flow conditions. Proxy indicators suitable as surrogates for the diverse contaminations in alluvial aquifers with different settings could be identified.

View Article and Find Full Text PDF

We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail.

View Article and Find Full Text PDF

Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data.

View Article and Find Full Text PDF

Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well.

View Article and Find Full Text PDF

As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed.

View Article and Find Full Text PDF